Image

Téléphone
05 40 00 25 21
Groupe de recherche
Photonique Moléculaire, Chémobiologie et Imageries
Statut
Permanent
Poste
Chercheur
Batiment
A12
Etage
3° Ouest
Research interests
I develop nanobiophotonic probes, i.e. nanoparticles that interact with light and are able to sense events at the biological level, for bioanalytics and bioimaging. My current research includes the design, synthesis,functionalization and spectroscopic characterization of ultrabright NPs (polymer or pure dyes). My main project is currently the ERC COMET.
- Fluorescent nanoparticles (organics: FONs, polymers ; or inorganics: quantum dots)
- FRET
- Biosensors
- Colloïds
- Surface functionalization (with DNA, proteins...)
- Polymer synthesis
Grants / Fundings
- 2024-2025: GPR Light, 1 year post-doc
- 2024-2028: ANR MicroRheoCell (PI: Y. Medina-gonzalez), partner
- 2023-2028: ERC St COMET
- 2023-2026: ANR JCJC SensET (declined)
- 2022 : CNRS MITI FONcoustics. Collaboration with Dr B. Arnal, LiPhy, Grenoble, FR.
- 2022 : CNRS PEPS COFLUO. Collaboration with Dr G. Le Fer, UMET, Lille, FR.
- 2021: young scientist starting grant from the Materials and Light Sciences Department of Bordeaux Univ.
- 2017-2020 : Marie Curie global fellowship H2020 SENSHOR between Boston University & Université de Bordeaux
Collaborations (past & present)
- M. W. Grinstaff Boston U., USA
- B. Arnal LiPhy, FR
- G. Le Fer UMET, FR
- F. Gauffre ISCR, FR
- G. Gouget ISCR, FR
- A. Estevez-Thorres LASIRE, FR
- F. Perez Curie Institute, FR
- Y. Medina-gonzalez LOF, FR
- S. Lecommandoux LCPO, FR
- C. Bonduelle LCPO, FR
- E. Garanger LCPO, FR
- E. Cloutet LCPO, FR
- P. Loubet ISM, FR
- Withings, FR
Institutional responsabilities
- co-founder with P. Loubet of the ISM's environmental footprint team
- PMCI group leader
- member of the SP2P community (SFC)
Journal illustrations

Other personal pages
- ORCID
- Google Scholar
- LinkedIn
Publications
Two-photon Dye-Based Fluorogenic Organic Nanoparticles as Intracellular Thiols Sensors. In Small Methods (Vol. 8, Issue 9, p. 2400716). https://doi.org/10.1002/smtd.202400716
().
Polypeptide- and Protein-Based Conjugate Nanoparticles via Aqueous Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). In Macromolecular Rapid Communications (Vol. 45, Issue 14, p. 2400079). https://doi.org/10.1002/marc.202400079
().
Carbon footprint and mitigation strategies of three chemistry laboratories. In Green Chemistry (Vol. 26, Issue 5, p. 2613-2622). https://doi.org/10.1039/d3gc03668e
().
Tuning the Aggregates of Thiophene-based Trimers by Methyl Side-chain Engineering for Photocatalytic Hydrogen Evolution. In Angewandte Chemie - International Edition (Vol. 63, Issue 1, p. e202315333). https://doi.org/10.1002/anie.202315333
().
Dye-based fluorescent organic nanoparticles made from polar and polarizable chromophores for bioimaging purposes: a bottom-up approach. In Comptes Rendus Chimie (Vol. 27). https://doi.org/10.5802/crchim.294
().
Transcription-Factor-Induced Aggregation of Biomimetic Oligonucleotide-b-Protein Micelles. In Biomacromolecules (Vol. 24, Issue 11, p. 5027-5034). https://doi.org/10.1021/acs.biomac.3c00662
().
Organic Conjugated Trimers with Donor–Acceptor–Donor Structures for Photocatalytic Hydrogen Generation Application. In Advanced Functional Materials (Vol. 33, Issue 15, p. 2211730). https://doi.org/10.1002/adfm.202211730
().
Luminescence-Sensitive Surfaces Bearing Ratiometric Nanoparticles for Bacteria Growth Detection. In ACS Applied Polymer Materials (Vol. 4, Issue 8, p. 5482-5492). https://doi.org/10.1021/acsapm.2c00549
().
FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. In Photochemical and Photobiological Sciences (Vol. 21, Issue 7, p. 1249-1255). https://doi.org/10.1007/s43630-022-00215-1
().
The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: which one would you chose?. In Chemical Science (Vol. 13, Issue 22, p. 6715-6731). https://doi.org/10.1039/d1sc06921g
().
An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone. In ACS Sensors (Vol. 7, Issue 4, p. 1132-1137). https://doi.org/10.1021/acssensors.2c00133
().
Aqueous ROPISA of α-amino acid: N -carboxyanhydrides: Polypeptide block secondary structure controls nanoparticle shape anisotropy. In Polymer Chemistry (Vol. 12, Issue 43, p. 6242-6251). https://doi.org/10.1039/d1py00995h
().
A progesterone biosensor derived from microbial screening. In Nature Communications (Vol. 11, Issue 1, p. 1276). https://doi.org/10.1038/s41467-020-14942-5
().
Hydrogel-embedded quantum dot−transcription factor sensors for quantitative progesterone detection. In ACS Applied Materials and Interfaces (Vol. 12, Issue 39, p. 43513-43521). https://doi.org/10.1021/acsami.0c13489
().
Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection. In ACS Sensors (Vol. 5, Issue 9, p. 2843-2851). https://doi.org/10.1021/acssensors.0c00981
().
Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing. In Advanced Healthcare Materials (Vol. 9, Issue 17, p. 2000403). https://doi.org/10.1002/adhm.202000403
().
Aqueous Ring-Opening Polymerization-Induced Self-Assembly (ROPISA) of N-Carboxyanhydrides. In Angewandte Chemie - International Edition (Vol. 59, Issue 2, p. 622-626). https://doi.org/10.1002/anie.201912028
().
Phase Transfer and DNA Functionalization of Quantum Dots Using an Easy-to-Prepare, Low-Cost Zwitterionic Polymer. In Methods in Molecular Biology (Vol. 2135, p. 125-139). https://doi.org/10.1007/978-1-0716-0463-2_7
().
Core-shell polymeric nanoparticles comprising BODIPY and fluorescein as ultra-bright ratiometric fluorescent pH sensors. In Photochemical and Photobiological Sciences (Vol. 18, Issue 5, p. 1156-1165). https://doi.org/10.1039/c8pp00457a
().
QD-FRET-based biosensing of small molecule analytes using transcription factor-DNA binding. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE (Vol. 10892, p. 108920Q). https://doi.org/10.1117/12.2516576
().
A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency. In Chemical Communications (Vol. 55, Issue 74, p. 11067-11070). https://doi.org/10.1039/c9cc04856a
().
Semiconductor Nanoplatelets: A New Class of Ultrabright Fluorescent Probes for Cytometric and Imaging Applications. In ACS Applied Materials and Interfaces (Vol. 10, Issue 29, p. 24739-24749). https://doi.org/10.1021/acsami.8b07143
().
A novel type of quantum dot-transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. In Nanoscale (Vol. 9, Issue 40, p. 15453-15460). https://doi.org/10.1039/c7nr05838a
().
Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. In Nature Nanotechnology (Vol. 11, Issue 12, p. 1112-1119). https://doi.org/10.1038/nnano.2016.150
().
Fluorescent core-shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: Synthesis and functionalization thereof. In Polymer Chemistry (Vol. 7, Issue 25, p. 4272-4283). https://doi.org/10.1039/c6py00646a
().
Erratum: Fluorescent core-shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: Synthesis and functionalization thereof (Polymer Chemistry (2016) DOI: 10.1039/c6py00646a). In Polymer Chemistry (Vol. 7, Issue 25, p. 4284). https://doi.org/10.1039/c6py90091g
().
Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications. In Biosensors and Bioelectronics (Vol. 75, p. 320-327). https://doi.org/10.1016/j.bios.2015.08.028
().
Fast, Efficient, and Stable Conjugation of Multiple DNA Strands on Colloidal Quantum Dots. In Bioconjugate Chemistry (Vol. 26, Issue 8, p. 1582-1589). https://doi.org/10.1021/acs.bioconjchem.5b00221
().
Ultrabright BODIPY-tagged polystyrene nanoparticles: Study of concentration effect on photophysical properties. In Journal of Physical Chemistry C (Vol. 118, Issue 25, p. 13945-13952). https://doi.org/10.1021/jp502790w
().
Ultrabright fluorescent polymeric nanoparticles made from a new family of BODIPY monomers. In Macromolecules (Vol. 46, Issue 13, p. 5167-5176). https://doi.org/10.1021/ma400590q
().
One-pot synthesis of pegylated fluorescent nanoparticles by RAFT miniemulsion polymerization using a phase inversion process. In Macromolecular Rapid Communications (Vol. 32, Issue 9-10, p. 699-705). https://doi.org/10.1002/marc.201100008
().
Study of poly(N,N-diethylacrylamide) nanogel formation by aqueous dispersion polymerization of N,N-diethylacrylamide in the presence of poly(ethylene oxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFT agents. In Soft Matter (Vol. 7, Issue 7, p. 3482-3490). https://doi.org/10.1039/c0sm01181a
().
Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. In Journal of Polymer Science, Part A: Polymer Chemistry (Vol. 47, Issue 9, p. 2373-2390). https://doi.org/10.1002/pola.23329
().