Image
Téléphone
+33540002244
Groupe de recherche
Spectroscopie Moléculaire
Statut
Permanent
Poste
ITA/BIATSS
Batiment
A12
Etage
3° Ouest
Publications
Chiroptical Properties of a Cryptophane Soluble at Neutral pH. In European Journal of Organic Chemistry (Vol. 27, Issue 18, p. e202400136). https://doi.org/10.1002/ejoc.202400136
().
Understanding the surrounding effects on Raman optical activity signatures of a chiral cage system: Cryptophane-PP-111. In Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy (Vol. 306, p. 123484). https://doi.org/10.1016/j.saa.2023.123484
().
Copper(II)-Amine Complex-Mediated Intramolecular Coupling of Gallates: A Bioinspired Solution to the Atroposelective Synthesis of Ellagitannins. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202412036
().
Identification, Quantitation, and Sensory Evaluation of Thiols in Bordeaux Red Wine with Characteristic Aging Bouquet. In Journal of Agricultural and Food Chemistry (Vol. 71, Issue 43, p. 16248-16259). https://doi.org/10.1021/acs.jafc.3c05854
().
Asymmetric Allenylation of Alkynes mediated by Chiral Organoselenated Reagents under Oxidative Conditions. In Angewandte Chemie - International Edition (Vol. 62, Issue 42, p. e202310436). https://doi.org/10.1002/anie.202310436
().
Synthesis and Chiroptical Properties of a Chiral Isotopologue of syn-Cryptophane-B. In Journal of Organic Chemistry (Vol. 88, Issue 7, p. 4829-4832). https://doi.org/10.1021/acs.joc.2c03101
().
Chiroptical and potential in vitro anti-inflammatory properties of viniferin stereoisomers from grapevine (Vitis vinifera L.). In Food Chemistry (Vol. 393, p. 133359). https://doi.org/10.1016/j.foodchem.2022.133359
().
Are the Physical Properties of Xe@Cryptophane Complexes Easily Predictable? The Case of syn? The anti-Tris-aza-Cryptophanes. In Journal of Organic Chemistry (Vol. 86, Issue 11, p. 7648-7658). https://doi.org/10.1021/acs.joc.1c00701
().
Resolution, structures, and vibrational circular dichroism of helicoidal trinickel and tricobalt paddlewheel complexes. In Chirality (Vol. 32, Issue 6, p. 753-764). https://doi.org/10.1002/chir.23211
().
Chiroptical study of cryptophanes subjected to self-encapsulation. In Chirality (Vol. 31, Issue 7, p. 481-491). https://doi.org/10.1002/chir.23079
().
Low pressure chemical vapour deposition of BN: Relationship between gas phase chemistry and coating microstructure. In Thin Solid Films (Vol. 664, p. 106-114). https://doi.org/10.1016/j.tsf.2018.08.020
().
Chiroptical properties of 2,2’-bioxirane. In Chirality (Vol. 30, Issue 4, p. 342-350). https://doi.org/10.1002/chir.22814
().
Enantiomeric resolution of helicochiral paddlewheel complexes and their infrared, Raman, UV-vis and X-ray optical activity. In Acta Crystallographica Section A: Foundations and Advances (Vol. 74, Issue 1, p. A108). https://doi.org/10.1107/S0108767318098914
().
Chiroptical properties of cryptophane-111. In Physical Chemistry Chemical Physics (Vol. 19, Issue 28, p. 18303-18310). https://doi.org/10.1039/c7cp02045g
().
Unusual Chiroptical Properties of the Cryptophane-222 Skeleton. In Journal of Physical Chemistry B (Vol. 120, Issue 49, p. 12650-12659). https://doi.org/10.1021/acs.jpcb.6b09771
().
Chiroptical Properties of Cryptophane-223 and -233 Investigated by ECD, VCD, and ROA Spectroscopy. In Journal of Physical Chemistry B (Vol. 119, Issue 27, p. 8631-8639). https://doi.org/10.1021/acs.jpcb.5b04539
().
In situ helicity inversion of self-assembled nano-helices. In Chemical Communications (Vol. 51, Issue 17, p. 3518-3521). https://doi.org/10.1039/c4cc07972h
().
How stereochemistry influences the taste of wine: Isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. In Analytica Chimica Acta (Vol. 888, p. 191-198). https://doi.org/10.1016/j.aca.2015.06.061
().
Raman optical activity of enantiopure cryptophanes. In Journal of Physical Chemistry B (Vol. 118, Issue 19, p. 5211-5217). https://doi.org/10.1021/jp502652p
().
Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. In Chemical Communications (Vol. 47, Issue 26, p. 7425-7427). https://doi.org/10.1039/c1cc11925g
().
PM-IRRAS investigation of self-assembled monolayers grafted onto SiO 2 /Au substrates. In Langmuir (Vol. 27, Issue 10, p. 6076-6084). https://doi.org/10.1021/la2006293
().
Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra. In Journal of Physical Chemistry B (Vol. 114, Issue 24, p. 8255-8261). https://doi.org/10.1021/jp101763y
().
Conformational equilibria of TADDOL-s in solution investigated by vibrational circular dichroism. In Chirality (Vol. 22, Issue 1 E). https://doi.org/10.1002/chir.20829
().
Dynamics of the reactions of C(3PJ ) Atoms with ethylene, allene, and methylacetylene at low energy revealed by Doppler-Fizeau spectroscopy. In Journal of Physical Chemistry A (Vol. 113, Issue 52, p. 14447-14457). https://doi.org/10.1021/jp9038545
().
Non-threshold, threshold, and nonadiabatic behavior of the key interstellar C + C2 H2 reaction. In Astrophysical Journal (Vol. 703, Issue 2, p. 1179-1187). https://doi.org/10.1088/0004-637X/703/2/1179
().
A low temperature investigation of the N(4S°) + NO reaction. In Physical Chemistry Chemical Physics (Vol. 11, Issue 37, p. 8149-8155). https://doi.org/10.1039/b905702a
().
Reaction kinetics to low temperatures. Dicarbon + acetylene, methylacetylene, allene and propene from 77 ≤ T ≤ 296 K. In Physical Chemistry Chemical Physics (Vol. 10, Issue 5, p. 729-737). https://doi.org/10.1039/b710796j
().
Erratum: Crossed-beam studies on the dynamics of the C + C 2 H2 interstellar reaction leading to linear, cyclic C 3 h + H, C3 + H2 (Faraday Discussion (2006) 133, DOI: 10.1039/b518300f). In Faraday Discussions (Vol. 133, p. 465-466). https://doi.org/10.1039/b615129a
().
Crossed-beam studies on the dynamics of the C + C2 H2 interstellar reaction leading to linear and cyclic C3 H + H and C 3 + H2 . In Faraday Discussions (Vol. 133, p. 157-176). https://doi.org/10.1039/b518300f
().
Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures. In Physical Chemistry Chemical Physics (p. 2921-2927). https://doi.org/10.1039/b506096f
().
Rate constants for RO2 + HO2 reactions measured under a large excess of HO2 . In Journal of Physical Chemistry A (Vol. 107, Issue 6, p. 818-821). https://doi.org/10.1021/jp026581r
().
CN( a 2Πi →X 2Σ+ ) chemiluminescence from the N+C 2 N, N+CCl, and N+C 2 reactions under low-pressure fast-flow conditions. In Chemical Physics Letters (Vol. 324, Issue 1-3, p. 1-6). https://doi.org/10.1016/S0009-2614(00)00588-1
().
Nitrobenzene detection by one-color laser-photolysis/ laser-induced fluorescence of NO (v″ = 0-3). In Applied Spectroscopy (Vol. 53, Issue 1, p. 57-64). https://doi.org/10.1366/0003702991945227
().
Product branching ratios of the CH + NO reaction. In Journal of Physical Chemistry A (Vol. 102, Issue 42, p. 8124-8130). https://doi.org/10.1021/jp9820929
().
Vibrational distribution in CN(X 2Σ+) from the N + C2 → CN + C reaction. In Chemical Physics (Vol. 222, Issue 1, p. 87-103). https://doi.org/10.1016/S0301-0104(97)00181-X
().