Image

Téléphone
05 56 84 66 20
Groupe de recherche
NanoSystèmes Analytiques
Statut
Permanent
Poste
Enseignant-chercheur
Batiment
ENSMAC
Etage
1°
Publications
Stimuli-Responsive DNA Nanomachines for Intracellular Targeted Electrochemiluminescence Imaging in Single Cells. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202421658
().
Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages. In Electrochem (Vol. 5, Issue 4, p. 407-420). https://doi.org/10.3390/electrochem5040027
().
Photoinduced Electrochemiluminescence Immunoassays. In Analytical Chemistry (Vol. 96, Issue 45, p. 18262-18268). https://doi.org/10.1021/acs.analchem.4c04662
().
Self-Powered Electrochemiluminescence for Imaging the Corrosion of Protective Coating of Metal and Quantitative Analysis. In Angewandte Chemie - International Edition (Vol. 63, Issue 45, p. e202411764). https://doi.org/10.1002/anie.202411764
().
Electrocatalytic amplification of coreactant electrochemiluminescence using redox mediators. In Electrochimica Acta (Vol. 499, p. 144677). https://doi.org/10.1016/j.electacta.2024.144677
().
Enhanced Electrochemiluminescence at the Gas/Liquid Interface of Bubbles Propelled into Solution. In Journal of the American Chemical Society (Vol. 146, Issue 32, p. 22724-22735). https://doi.org/10.1021/jacs.4c07566
().
Light Conversion by Electrochemiluminescence at Semiconductor Surfaces. In Accounts of Chemical Research (Vol. 57, Issue 15, p. 2144-2153). https://doi.org/10.1021/acs.accounts.4c00273
().
Electrochemiluminescence Microscopy. In Angewandte Chemie - International Edition (Vol. 63, Issue 29, p. e202407588). https://doi.org/10.1002/anie.202407588
().
Thickness-Resolved Electrochemiluminescence Microscopy of Extracellular Matrix at Tumor Tissues for Rapid Cancer Diagnosis. In ACS Applied Materials and Interfaces (Vol. 16, Issue 25, p. 32078-32086). https://doi.org/10.1021/acsami.4c05735
().
Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. In ChemPhysChem (Vol. 25, Issue 12, p. e202400133). https://doi.org/10.1002/cphc.202400133
().
Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity. In Chemistry - A European Journal (Vol. 30, Issue 29, p. e202400078). https://doi.org/10.1002/chem.202400078
().
Complex electrochemiluminescence patterns shaped by hydrodynamics at a rotating bipolar electrode. In Chemical Science (Vol. 15, Issue 23, p. 8723-8730). https://doi.org/10.1039/d4sc02528h
().
Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. In Analyst (Vol. 149, Issue 12, p. 3317-3324). https://doi.org/10.1039/d4an00470a
().
Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes. In Electrochimica Acta (Vol. 484, p. 143957). https://doi.org/10.1016/j.electacta.2024.143957
().
Off-Grid Electrogenerated Chemiluminescence with Customized p-i-n Photodiodes. In Small (Vol. 20, Issue 14, p. 2308023). https://doi.org/10.1002/smll.202308023
().
Wireless rotating bipolar electrochemiluminescence for enzymatic detection. In Analyst (Vol. 149, Issue 9, p. 2756-2761). https://doi.org/10.1039/d4an00365a
().
Bifunctional TEMPO-based catalysis boosts luminol electrochemiluminescence for cholesterol sensing. In Sensors and Actuators B: Chemical (Vol. 403, p. 135186). https://doi.org/10.1016/j.snb.2023.135186
().
Wireless Magnetoelectrochemical Induction of Rotational Motion. In Advanced Science (Vol. 11, Issue 9, p. 2306635). https://doi.org/10.1002/advs.202306635
().
Near-IR Photoinduced Electrochemiluminescence Imaging with Structured Silicon Photoanodes. In ACS Applied Materials and Interfaces (Vol. 16, Issue 9, p. 11722-11729). https://doi.org/10.1021/acsami.3c19029
().
Light-emitting bipolar electrochemistry: a straightforward way to illustrate thermodynamic aspects to students. In Journal of Solid State Electrochemistry (Vol. 28, Issue 3-4, p. 1225-1231). https://doi.org/10.1007/s10008-023-05690-9
().
All-Optical Electrochemiluminescence at Metal-Insulator-Semiconductor Diodes. In Journal of Physical Chemistry Letters (Vol. 15, Issue 1, p. 148-155). https://doi.org/10.1021/acs.jpclett.3c03220
().
Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. In Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-024-05133-y
().
Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry. In ChemElectroChem. https://doi.org/10.1002/celc.202400522
().
Bipolar electrochemiluminescence at the water/organic interface. In Chemical Science. https://doi.org/10.1039/d4sc06103a
().
Recent advances in electrochemiluminescence immunosensing. In Sensors and Diagnostics. https://doi.org/10.1039/d4sd00272e
().
Enhanced Electrochemiluminescence by Knocking Out Gold Active Sites. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202421185
().
Electrochemiluminescence Enhanced by a Non-Emissive Dual Redox Mediator. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202412097
().
Designable Electrochemiluminescence Patterning for Renewable and Enhanced Bioimaging. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202410825
().
Optics Determines the Electrochemiluminescence Signal of Bead-Based Immunoassays. In ACS Sensors (Vol. 8, Issue 12, p. 4782-4791). https://doi.org/10.1021/acssensors.3c01878
().
Modulation of circularly polarized luminescence by swelling of microgels functionalized with enantiopure [Ru(bpy)3 ]2+ luminophores. In Chemical Communications (Vol. 60, Issue 13, p. 1743-1746). https://doi.org/10.1039/d3cc04391f
().
Redox-mediated electrochemiluminescence enhancement for bead-based immunoassay. In Chemical Science (Vol. 15, Issue 3, p. 1150-1158). https://doi.org/10.1039/d3sc06357g
().
Infrared photoinduced electrochemiluminescence microscopy of single cells. In Chemical Science (Vol. 15, Issue 6, p. 2055-2061). https://doi.org/10.1039/d3sc05983a
().
Luminescent Metal–Organic Frameworks for Electrochemiluminescent Detection of Water Pollutants. In Materials (Vol. 16, Issue 23, p. 7502). https://doi.org/10.3390/ma16237502
().
Dynamic Mapping of Electrochemiluminescence Reactivity in Space: Application to Bead-Based Assays. In Analytical Chemistry (Vol. 95, Issue 42, p. 15700-15706). https://doi.org/10.1021/acs.analchem.3c02960
().
Tris(2,2’-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. In Analytical and Bioanalytical Chemistry (Vol. 415, Issue 24, p. 5875-5898). https://doi.org/10.1007/s00216-023-04876-4
().
Methods and strategies for robust electrochemiluminescence signal quantification. In Current Opinion in Electrochemistry (Vol. 41, p. 101375). https://doi.org/10.1016/j.coelec.2023.101375
().
Local reactivity of metal-insulator-semiconductor photoanodes imaged by photoinduced electrochemiluminescence microscopy. In Chemical Communications (Vol. 59, Issue 82, p. 12262-12265). https://doi.org/10.1039/d3cc03702a
().
Endogenous and exogenous wireless multimodal light-emitting chemical devices. In Chemical Science (Vol. 14, Issue 39, p. 10664-10670). https://doi.org/10.1039/d3sc03678b
().
All-Optical Electrochemiluminescence. In Journal of the American Chemical Society (Vol. 145, Issue 31, p. 17420-17426). https://doi.org/10.1021/jacs.3c05856
().
Resistance measurements for the wireless evaluation of electrocatalytic activity. In Electrochimica Acta (Vol. 458, p. 142506). https://doi.org/10.1016/j.electacta.2023.142506
().
Bimodal Electrochemiluminescence Microscopy of Single Cells. In Analytical Chemistry (Vol. 95, Issue 18, p. 7372-7378). https://doi.org/10.1021/acs.analchem.3c00869
().
Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. In Chemical and Biomedical Imaging (Vol. 1, Issue 1, p. 58-65). https://doi.org/10.1021/cbmi.3c00003
().
Ultrasensitive Imaging of Cells and Sub-Cellular Entities by Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 62, Issue 16, p. e202218574). https://doi.org/10.1002/anie.202218574
().
Upconversion photoinduced electrochemiluminescence of luminol-H2 O2 at Si/SiOx /Ni photoanodes. In Electrochimica Acta (Vol. 444, p. 142013). https://doi.org/10.1016/j.electacta.2023.142013
().
Electrochemiluminescence Amplification in Bead-Based Assays Induced by a Freely Diffusing Iridium(III) Complex. In ACS Sensors (Vol. 8, Issue 2, p. 933-939). https://doi.org/10.1021/acssensors.2c02697
().
Wireless Electronic Light Emission: An Introduction to Bipolar Electrochemistry. In Journal of Chemical Education (Vol. 100, Issue 2, p. 767-773). https://doi.org/10.1021/acs.jchemed.2c00573
().
Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. In Angewandte Chemie - International Edition (Vol. 62, Issue 6, p. e202215078). https://doi.org/10.1002/anie.202215078
().
Benzothioxanthene Dicarboximide as a Tuneable Electrogenerated Chemiluminescence Dye. In ChemElectroChem (Vol. 9, Issue 24, p. e202200967). https://doi.org/10.1002/celc.202200967
().
High Electrochemiluminescence from Ru(bpy)3 2+ Embedded Metal–Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. In Advanced Science (Vol. 9, Issue 35, p. 2204715). https://doi.org/10.1002/advs.202204715
().
Design of optoelectrodes for the remote imaging of cells and in situ electrochemical detection of neurosecretory events. In Bioelectrochemistry (Vol. 148, p. 108262). https://doi.org/10.1016/j.bioelechem.2022.108262
().
Boosting the electrochemiluminescence of luminol-O2 system by high-intensity focused ultrasound. In Analytical and Bioanalytical Chemistry (Vol. 414, Issue 29-30, p. 8309-8315). https://doi.org/10.1007/s00216-022-04365-0
().
Wireless electrochemical light emission in ultrathin 2D nanoconfinements. In Chemical Science (Vol. 13, Issue 48, p. 14277-14284). https://doi.org/10.1039/d2sc04670a
().
Enhanced electrochemiluminescence at microgel-functionalized beads. In Biosensors and Bioelectronics (Vol. 216, p. 114640). https://doi.org/10.1016/j.bios.2022.114640
().
Recent advances in electrochemiluminescence imaging analysis. In eScience (Vol. 2, Issue 6, p. 591-605). https://doi.org/10.1016/j.esci.2022.10.004
().
Electrochemiluminescence microscopy: From single objects to living cells. In Current Opinion in Electrochemistry (Vol. 35, p. 101096). https://doi.org/10.1016/j.coelec.2022.101096
().
Electrochemiluminescent enantioselective detection with chiral-imprinted mesoporous metal surfaces. In Chemical Communications (Vol. 58, Issue 76, p. 10707-10710). https://doi.org/10.1039/d2cc02562k
().
Micropatterning of electrochemiluminescent polymers based on multipolar Ru-complex two-photon initiators. In Chemical Communications (Vol. 58, Issue 69, p. 9678-9681). https://doi.org/10.1039/d2cc04159f
().
Interplay between electrochemistry and optical imaging: The whole is greater than the sum of the parts. In Current Opinion in Electrochemistry (Vol. 34, p. 101007). https://doi.org/10.1016/j.coelec.2022.101007
().
Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. In Journal of Physical Chemistry Letters (Vol. 13, Issue 24, p. 5538-5544). https://doi.org/10.1021/acs.jpclett.2c01512
().
Anti-Stokes photoinduced electrochemiluminescence at a photocathode. In Chemical Communications (Vol. 58, Issue 47, p. 6686-6688). https://doi.org/10.1039/d2cc01804g
().
Metal-Insulator-Semiconductor Anodes for Ultrastable and Site-Selective Upconversion Photoinduced Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 61, Issue 20, p. e202201865). https://doi.org/10.1002/anie.202201865
().
Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. In Analytical Chemistry (Vol. 94, Issue 3, p. 1686-1696). https://doi.org/10.1021/acs.analchem.1c04238
().
Sensitive electrochemiluminescence biosensing of polynucleotide kinase using the versatility of two-dimensional Ti3 C2 TX MXene nanomaterials. In Analytica Chimica Acta (Vol. 1191, p. 339346). https://doi.org/10.1016/j.aca.2021.339346
().
Electrochemiluminescence with semiconductor (nano)materials. In Chemical Science (Vol. 2022, Issue 9, p. 2528-2550). https://doi.org/10.1039/D1SC06987J
().
Electrochemiluminescence Sensors in Bioanalysis. In Encyclopedia of Sensors and Biosensors: Volume 1-4, First Edition (Vol. 1-4, p. 317-340). https://doi.org/10.1016/B978-0-12-822548-6.00147-3
().
Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. In Cell Reports Physical Science (Vol. 2, Issue 12, p. 100670). https://doi.org/10.1016/j.xcrp.2021.100670
().
Enhanced Cathodic Electrochemiluminescence of Luminol on Iron Electrodes. In Analytical Chemistry (Vol. 93, Issue 49, p. 16425-16431). https://doi.org/10.1021/acs.analchem.1c03139
().
Single Biomolecule Imaging by Electrochemiluminescence. In Journal of the American Chemical Society (Vol. 143, Issue 43, p. 17910-17914). https://doi.org/10.1021/jacs.1c06673
().
Lorentz Force-Driven Autonomous Janus Swimmers. In Journal of the American Chemical Society (Vol. 143, Issue 32, p. 12708-12714). https://doi.org/10.1021/jacs.1c05589
().
Shadow Electrochemiluminescence Microscopy of Single Mitochondria. In Angewandte Chemie - International Edition (Vol. 60, Issue 34, p. 18742-18749). https://doi.org/10.1002/anie.202105867
().
A microscopy technique that images single reaction events in total darkness. In Nature (Vol. 596, Issue 7871, p. 194-195). https://doi.org/10.1038/d41586-021-02098-1
().
Rational Design of Electrochemiluminescent Devices. In Accounts of Chemical Research (Vol. 54, Issue 14, p. 2936-2945). https://doi.org/10.1021/acs.accounts.1c00230
().
Photoinduced electrochemiluminescence at nanostructured hematite electrodes. In Electrochimica Acta (Vol. 381, p. 138238). https://doi.org/10.1016/j.electacta.2021.138238
().
Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. In ChemPhysChem (Vol. 22, Issue 11, p. 1094-1100). https://doi.org/10.1002/cphc.202100112
().
Editorial: Electrochemiluminescence: From Fundamentals to Applications. In Frontiers in Chemistry (Vol. 9, p. 706465). https://doi.org/10.3389/fchem.2021.706465
().
Electrochemiluminescence Loss in Photobleaching. In Angewandte Chemie - International Edition (Vol. 60, Issue 14, p. 7686-7690). https://doi.org/10.1002/anie.202015030
().
Electrochemiluminescence microscopy of cells: Essential role of surface regeneration. In Analytical Chemistry (Vol. 93, Issue 3, p. 1652-1657). https://doi.org/10.1021/acs.analchem.0c05123
().
Bipolar (Bio)electroanalysis. In Annual Review of Analytical Chemistry (Vol. 14, p. 65-86). https://doi.org/10.1146/annurev-anchem-090820-093307
().
Single-Particle Tracking Method in Fluorescence Microscopy to Monitor Bioenergetic Responses of Individual Mitochondria. In Methods in Molecular Biology (Vol. 2276, p. 153-163). https://doi.org/10.1007/978-1-0716-1266-8_11
().
Electrochemistry-Based Light-Emitting Mobile Systems. In ChemElectroChem (Vol. 7, Issue 24, p. 4853-4862). https://doi.org/10.1002/celc.202001104
().
Spatially resolved electrochemiluminescence through a chemical lens. In Chemical Science (Vol. 11, Issue 38, p. 10496-10500). https://doi.org/10.1039/d0sc04210b
().
Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays. In Biosensors and Bioelectronics (Vol. 165, p. 112372). https://doi.org/10.1016/j.bios.2020.112372
().
Wireless enhanced electrochemiluminescence at a bipolar microelectrode in a solid-state micropore. In Journal of the Electrochemical Society (Vol. 167, Issue 13, p. 137509). https://doi.org/10.1149/1945-7111/abbbc1
().
Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. In Chemical Communications (Vol. 56, Issue 68, p. 9771-9774). https://doi.org/10.1039/d0cc04156d
().
Enhancing the sensitivity of plasmonic optical fiber sensors by analyzing the distribution of the optical modes intensity. In Optics Express (Vol. 28, Issue 20, p. 28740-28749). https://doi.org/10.1364/OE.399856
().
Luminescence Amplification at BiVO4 Photoanodes by Photoinduced Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 59, Issue 35, p. 15157-15160). https://doi.org/10.1002/anie.202004634
().
Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. In ACS Applied Materials and Interfaces (Vol. 12, Issue 32, p. 36548-36557). https://doi.org/10.1021/acsami.0c09816
().
Quantum Nuts: Two Shells Are Better than One to Achieve Highly Efficient Electrochemiluminescence. In ACS Central Science (Vol. 6, Issue 7, p. 1043-1045). https://doi.org/10.1021/acscentsci.0c00802
().
Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxene-Core Dyes. In Chemistry - A European Journal (Vol. 26, Issue 38, p. 8407-8416). https://doi.org/10.1002/chem.202000474
().
Electrochemiluminescence reaction pathways in nanofluidic devices. In Analytical and Bioanalytical Chemistry (Vol. 412, Issue 17, p. 4067-4075). https://doi.org/10.1007/s00216-020-02630-8
().
Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. In Chemical Science (Vol. 11, Issue 28, p. 7438-7443). https://doi.org/10.1039/d0sc02431g
().
Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. In Angewandte Chemie - International Edition (Vol. 59, Issue 26, p. 10416-10420). https://doi.org/10.1002/anie.202002323
().
Chiroptical detection of a model ruthenium dye in water by circularly polarized-electrochemiluminescence. In Chemical Communications (Vol. 56, Issue 44, p. 5989-5992). https://doi.org/10.1039/d0cc01571g
().
Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. In Chemical Science (Vol. 11, Issue 17, p. 4508-4515). https://doi.org/10.1039/d0sc00853b
().
Remote Actuation of a Light-Emitting Device Based on Magnetic Stirring and Wireless Electrochemistry. In ChemPhysChem (Vol. 21, Issue 7, p. 600-604). https://doi.org/10.1002/cphc.202000019
().
Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. In Journal of Analysis and Testing (Vol. 4, Issue 2, p. 107-113). https://doi.org/10.1007/s41664-020-00131-2
().
Electrosynthesis of gradient TiO2 nanotubes and rapid screening using scanning photoelectrochemical microscopy. In Sustainable Energy and Fuels (Vol. 4, Issue 3, p. 1099-1104). https://doi.org/10.1039/c9se00895k
().
Multiplexed remote SPR detection of biological interactions through optical fiber bundles. In Sensors (Switzerland) (Vol. 20, Issue 2, p. 511). https://doi.org/10.3390/s20020511
().
Chapter 1: Introduction and Overview of Electrogenerated Chemiluminescence. In RSC Detection Science (Vol. 2020-January, Issue 15, p. 1-28). https://doi.org/10.1039/9781788015776-00001
().
Dual microelectrodes decorated with nanotip arrays: Fabrication, characterization and spectroelectrochemical sensing. In Electrochimica Acta (Vol. 328, p. 135105). https://doi.org/10.1016/j.electacta.2019.135105
().
Erratum: Bright Electrochemiluminescence Tunable in the Near-Infrared of Chiral Cationic Helicene Chromophores (The Journal of Physical Chemistry C (2017) 121:1 (785−792) DOI: 10.1021/acs.jpcc.6b11831). In Journal of Physical Chemistry C (Vol. 123, Issue 48, p. 29496-29497). https://doi.org/10.1021/acs.jpcc.9b10240
().
Correction to: Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity (Journal of Analysis and Testing, (2019), 3, 2, (160-165), 10.1007/s41664-019-00094-z). In Journal of Analysis and Testing (Vol. 3, Issue 4, p. 341). https://doi.org/10.1007/s41664-019-00105-z
().
Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. In Journal of Physical Chemistry Letters (Vol. 10, Issue 18, p. 5318-5324). https://doi.org/10.1021/acs.jpclett.9b02188
().
Photoinduced Electrochemiluminescence at Silicon Electrodes in Water. In Journal of the American Chemical Society (Vol. 141, Issue 33, p. 13013-13016). https://doi.org/10.1021/jacs.9b06743
().
Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. In Current Opinion in Electrochemistry (Vol. 16, p. 28-34). https://doi.org/10.1016/j.coelec.2019.04.004
().
Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. In Analytical Chemistry (Vol. 91, Issue 14, p. 8900-8907). https://doi.org/10.1021/acs.analchem.9b00559
().
Reactive oxygen species generated by cold atmospheric plasmas in aqueous solution: Successful electrochemical monitoring in situ under a high voltage system. In Analytical Chemistry (Vol. 91, Issue 13, p. 8002-8007). https://doi.org/10.1021/acs.analchem.9b01912
().
Corrigendum to: Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence (Chemistry - A European Journal, (2016), 22, 51, (18394-18403), 10.1002/chem.201603591). In Chemistry - A European Journal (Vol. 25, Issue 34, p. 8169). https://doi.org/10.1002/chem.201901658
().
Electrochemiluminescence Imaging for Bioanalysis. In Annual Review of Analytical Chemistry (Vol. 12, p. 275-295). https://doi.org/10.1146/annurev-anchem-061318-115226
().
Corrigendum to: Electrogenerated Chemiluminescence of Cationic Triangulene Dyes: Crucial Influence of the Core Heteroatoms (Chemistry - A European Journal, (2015), 21, 52, (19243-19249), 10.1002/chem.201501738). In Chemistry - A European Journal (Vol. 25, Issue 30, p. 7402). https://doi.org/10.1002/chem.201901657
().
Circularly-Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. In Angewandte Chemie - International Edition (Vol. 58, Issue 21, p. 6952-6956). https://doi.org/10.1002/anie.201901303
().
Highly parallel remote SPR detection of DNA hybridization by micropillar optical arrays. In Analytical and Bioanalytical Chemistry (Vol. 411, Issue 11, p. 2249-2259). https://doi.org/10.1007/s00216-019-01689-2
().
Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity. In Journal of Analysis and Testing (Vol. 3, Issue 2, p. 160-165). https://doi.org/10.1007/s41664-019-00094-z
().
Potential-Induced Fine-Tuning of the Enantioaffinity of Chiral Metal Phases. In Angewandte Chemie - International Edition (Vol. 58, Issue 11, p. 3471-3475). https://doi.org/10.1002/anie.201812057
().
Microwell array integrating nanoelectrodes for coupled opto-electrochemical monitorings of single mitochondria. In Biosensors and Bioelectronics (Vol. 126, p. 672-678). https://doi.org/10.1016/j.bios.2018.11.036
().
Biochemical sensing based on bipolar electrochemistry. In Bioelectrochemistry: Design and Applications of Biomaterials (p. 101-120). https://doi.org/10.1515/9783110570526-006
().
Polarization induced electro-functionalization of pore walls: A contactless technology. In Biosensors (Vol. 9, Issue 4, p. 121). https://doi.org/10.3390/bios9040121
().
Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. In Journal of the American Chemical Society (Vol. 140, Issue 44, p. 14753-14760). https://doi.org/10.1021/jacs.8b08080
().
Eosin-Mediated Alkylsulfonyl Cyanation of Olefins. In Organic Letters (Vol. 20, Issue 15, p. 4521-4525). https://doi.org/10.1021/acs.orglett.8b01828
().
C-Functionalized Cationic Diazaoxatriangulenes: Late-Stage Synthesis and Tuning of Physicochemical Properties. In Chemistry - A European Journal (Vol. 24, Issue 40, p. 10186-10195). https://doi.org/10.1002/chem.201801486
().
Tuning Electrochemiluminescence in Multistimuli Responsive Hydrogel Films. In Journal of Physical Chemistry Letters (Vol. 9, Issue 2, p. 340-345). https://doi.org/10.1021/acs.jpclett.7b03119
().
Activation of the TRPV1 thermoreceptor induced by modulated or unmodulated 1800 mhz radiofrequency field exposure. In Radiation Research (Vol. 189, Issue 1, p. 95-103). https://doi.org/10.1667/RR14877.1
().
A snapshot of the electrochemical reaction layer by using 3 dimensionally resolved fluorescence mapping. In Chemical Science (Vol. 9, Issue 32, p. 6622-6628). https://doi.org/10.1039/c8sc02011f
().
Current hot-spots and some more exotic topics. In Current Opinion in Electrochemistry (Vol. 7, p. A1-A4). https://doi.org/10.1016/j.coelec.2018.03.002
().
Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. In Physical Chemistry Chemical Physics (Vol. 20, Issue 14, p. 9198-9210). https://doi.org/10.1039/c8cp00264a
().
Enhanced annihilation electrochemiluminescence by nanofluidic confinement. In Chemical Science (Vol. 9, Issue 48, p. 8946-8950). https://doi.org/10.1039/c8sc03209b
().
Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. In Journal of the American Chemical Society (Vol. 139, Issue 46, p. 16830-16837). https://doi.org/10.1021/jacs.7b09260
().
Capillary-assisted bipolar electrochemistry: A focused mini review. In Electrophoresis (Vol. 38, Issue 21, p. 2687-2694). https://doi.org/10.1002/elps.201600568
().
Wireless light-emitting electrochemical rotors. In Journal of Physical Chemistry Letters (Vol. 8, Issue 19, p. 4930-4934). https://doi.org/10.1021/acs.jpclett.7b01899
().
Toward the analysis of mitochondria isolated from leukemic cells with electrochemically instrumented microwell arrays. In TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems (p. 1624-1627). https://doi.org/10.1109/TRANSDUCERS.2017.7994374
().
Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil-Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels. In Langmuir (Vol. 33, Issue 29, p. 7231-7238). https://doi.org/10.1021/acs.langmuir.7b01585
().
Efficient Annihilation Electrochemiluminescence of Cationic Helicene Luminophores. In ChemElectroChem (Vol. 4, Issue 7, p. 1750-1756). https://doi.org/10.1002/celc.201600906
().
Spatially-resolved multicolor bipolar electrochemiluminescence. In Electrochemistry Communications (Vol. 77, p. 10-13). https://doi.org/10.1016/j.elecom.2017.02.006
().
Bright electrochemiluminescence tunable in the near-infrared of chiral cationic helicene chromophores. In Journal of Physical Chemistry C (Vol. 121, Issue 1, p. 785-792). https://doi.org/10.1021/acs.jpcc.6b11831
().
Full-Spectral Multiplexing of Bioluminescence Resonance Energy Transfer in Three TRPV Channels. In Biophysical Journal (Vol. 112, Issue 1, p. 87-98). https://doi.org/10.1016/j.bpj.2016.11.3197
().
Recent advances in bipolar electrochemistry. In Electroanalytical Chemistry: A Series of Advances, Volume 27 (p. 27-117). https://doi.org/10.1201/9781315270302
().
Co(III) complexes of (1,3-selenazol-2-yl)hydrazones and their sulphur analogues. In Dalton Transactions (Vol. 46, Issue 9, p. 2910-2924). https://doi.org/10.1039/c6dt04785h
().
Nano-structured optical fiber bundles for remote SPR detection: A first step toward in vivo biomolecular analysis. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 10323, p. 1032307). https://doi.org/10.1117/12.2262559
().
Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. In Physical Chemistry Chemical Physics (Vol. 18, Issue 48, p. 32697-32702). https://doi.org/10.1039/c6cp05688a
().
Combined local anodization of titanium and scanning photoelectrochemical mapping of TiO2 spot arrays. In Electrochimica Acta (Vol. 222, p. 84-91). https://doi.org/10.1016/j.electacta.2016.10.151
().
Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence. In Chemistry - A European Journal (Vol. 22, Issue 51, p. 18394-18403). https://doi.org/10.1002/chem.201603591
().
Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence. In Chemistry - A European Journal (Vol. 22, Issue 51, p. 18273). https://doi.org/10.1002/chem.201604489
().
Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. In Langmuir (Vol. 32, Issue 49, p. 12995-13002). https://doi.org/10.1021/acs.langmuir.6b03040
().
Deciphering the Platinized Surface Reactivity to Improve the Detection of Hydrogen Peroxide in Bioanalyses. In ChemElectroChem (Vol. 3, Issue 12, p. 2288-2296). https://doi.org/10.1002/celc.201600558
().
Essential Role of Electrode Materials in Electrochemiluminescence Applications. In ChemElectroChem (Vol. 3, Issue 12, p. 1990-1997). https://doi.org/10.1002/celc.201600602
().
Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7085-7094). https://doi.org/10.1007/s00216-016-9504-1
().
Analytical electrochemiluminescence. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7001-7002). https://doi.org/10.1007/s00216-016-9837-9
().
Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7003-7011). https://doi.org/10.1007/s00216-016-9606-9
().
Bright Electrogenerated Chemiluminescence of a Bis-Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. In Chemistry - A European Journal (Vol. 22, Issue 36, p. 12702-12714). https://doi.org/10.1002/chem.201600413
().
Frontispiece: Bright Electrogenerated Chemiluminescence of a Bis-Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. In Chemistry - A European Journal (Vol. 22, Issue 36). https://doi.org/10.1002/chem.201683662
().
PDMS microwells for multi-parametric monitoring of single mitochondria on a large scale: A study of their individual membrane potential and endogenous NADH. In Integrative Biology (United Kingdom) (Vol. 8, Issue 8, p. 836-843). https://doi.org/10.1039/c6ib00064a
().
Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. In Analyst (Vol. 141, Issue 14, p. 4299-4304). https://doi.org/10.1039/c6an00652c
().
Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence. In Analytical Chemistry (Vol. 88, Issue 12, p. 6585-6592). https://doi.org/10.1021/acs.analchem.6b01434
().
Dual-Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry. In ChemElectroChem (Vol. 3, Issue 3, p. 404-409). https://doi.org/10.1002/celc.201500402
().
Electric fields for generating unconventional motion of small objects. In Current Opinion in Colloid and Interface Science (Vol. 21, p. 57-64). https://doi.org/10.1016/j.cocis.2015.12.002
().
Applications of electrogenerated chemiluminescence in analytical chemistry. In Luminescence in Electrochemistry: Applications in Analytical Chemistry, Physics and Biology (p. 257-291). https://doi.org/10.1007/978-3-319-49137-0_8
().
Saccharide-induced modulation of photoluminescence lifetime in microgels. In Physical Chemistry Chemical Physics (Vol. 18, Issue 25, p. 16812-16821). https://doi.org/10.1039/c6cp01523a
().
Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant. In Chemical Communications (Vol. 52, Issue 87, p. 12845-12848). https://doi.org/10.1039/c6cc07030b
().
Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. In RSC Advances (Vol. 6, Issue 82, p. 78457-78467). https://doi.org/10.1039/c6ra12791f
().
Electrogenerated Chemiluminescence of Cationic Triangulene Dyes: Crucial Influence of the Core Heteroatoms. In Chemistry - A European Journal (Vol. 21, Issue 52, p. 19243-19249). https://doi.org/10.1002/chem.201501738
().
A Sensitive Electrochemiluminescence Immunosensor for Celiac Disease Diagnosis Based on Nanoelectrode Ensembles. In Analytical Chemistry (Vol. 87, Issue 24, p. 12080-12087). https://doi.org/10.1021/acs.analchem.5b02801
().
Shearforce positioning of nanoprobe electrode arrays for scanning electrochemical microscopy experiments. In Electrochimica Acta (Vol. 179, p. 45-56). https://doi.org/10.1016/j.electacta.2015.04.140
().
Differential Photoluminescent and Electrochemiluminescent Behavior for Resonance Energy Transfer Processes in Thermoresponsive Microgels. In Journal of Physical Chemistry B (Vol. 119, Issue 40, p. 12954-12961). https://doi.org/10.1021/acs.jpcb.5b06920
().
3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. In Chemical Science (Vol. 6, Issue 8, p. 4433-4437). https://doi.org/10.1039/c5sc01530h
().
Effects of 50Hz magnetic fields on gap junctional intercellular communication in NIH3T3 cells. In Bioelectromagnetics (Vol. 36, Issue 4, p. 287-293). https://doi.org/10.1002/bem.21908
().
Optical microwell arrays for large-scale studies of single mitochondria metabolic responses. In Methods in Molecular Biology (Vol. 1264, p. 47-58). https://doi.org/10.1007/978-1-4939-2257-4_5
().
Electrochemiluminescent swimmers for dynamic enzymatic sensing. In Chemical Communications (Vol. 50, Issue 71, p. 10202-10205). https://doi.org/10.1039/c4cc04105d
().
Electrochemical monitoring of the early events of hydrogen peroxide production by mitochondria. In Angewandte Chemie - International Edition (Vol. 53, Issue 26, p. 6655-6658). https://doi.org/10.1002/anie.201403096
().
Enhanced detection of hydrogen peroxide with platinized microelectrode arrays for analyses of mitochondria activities. In Electrochimica Acta (Vol. 126, p. 171-178). https://doi.org/10.1016/j.electacta.2013.11.104
().
Optical microwell array for large scale studies of single mitochondria metabolic responses. In Analytical and Bioanalytical Chemistry (Vol. 406, Issue 4, p. 931-941). https://doi.org/10.1007/s00216-013-7211-8
().
Lighting up redox propulsion with luminol electrogenerated chemiluminescence. In ChemElectroChem (Vol. 1, Issue 1, p. CELC201300042). https://doi.org/10.1002/celc.201300042
().
Mapping electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays. In Chemical Science (Vol. 5, Issue 6, p. 2568-2572). https://doi.org/10.1039/c4sc00312h
().
Photochemical functionalisation of optical nanotips with a rhodamine chemosensor for remote through-fiber detection of Hg2+. In RSC Advances (Vol. 3, Issue 46, p. 24140-24145). https://doi.org/10.1039/c3ra45198d
().
Development of electrochemical microsensors for the monitoring of mitochondrial activities. In 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS and EUROSENSORS 2013 (p. 1135-1138). https://doi.org/10.1109/Transducers.2013.6626972
().
Bipolar electrochemistry: from materials science to motion and beyond. In Accounts of Chemical Research (Vol. 46, Issue 11, p. 2513-2523). https://doi.org/10.1021/ar400039k
().
Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes. In Analytical Chemistry (Vol. 85, Issue 19, p. 8902-8909). https://doi.org/10.1021/ac402200p
().
Electrochemiluminescent polymer films with a suitable redox "turn-off" absorbance window for remote selective sensing of Hg 2+. In Analyst (Vol. 138, Issue 16, p. 4500-4504). https://doi.org/10.1039/c3an00545c
().
Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection. In Lab on a Chip (Vol. 13, Issue 15, p. 2956-2962). https://doi.org/10.1039/c3lc50335f
().
Monitoring metabolic responses of single mitochondria within poly(dimethylsiloxane) wells: Study of their endogenous reduced nicotinamide adenine dinucleotide evolution. In Analytical Chemistry (Vol. 85, Issue 10, p. 5146-5152). https://doi.org/10.1021/ac400494e
().
Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. In Journal of the American Chemical Society (Vol. 135, Issue 15, p. 5517-5520). https://doi.org/10.1021/ja401011j
().
Fiber-Optic Biosensors. In Chemical Sensors and Biosensors (p. 335-351). https://doi.org/10.1002/9781118561799.ch14
().
Oxygen Plasma Treatment of Platinized Ultramicroelectrodes Increases Sensitivity for Hydrogen Peroxide Detection on Mitochondria. In Electroanalysis (Vol. 25, Issue 3, p. 656-663). https://doi.org/10.1002/elan.201200409
().
Light-emitting electrochemical "swimmers". In Angewandte Chemie - International Edition (Vol. 51, Issue 45, p. 11284-11288). https://doi.org/10.1002/anie.201206227
().
Kinetic investigations of the electrochemical bromination of peracetylated d-glucal in organic solvents. In Electrochimica Acta (Vol. 56, Issue 27, p. 9968-9972). https://doi.org/10.1016/j.electacta.2011.08.085
().
Photopatterning of ultrathin electrochemiluminescent redox hydrogel films. In Chemical Communications (Vol. 47, Issue 32, p. 9125-9127). https://doi.org/10.1039/c1cc12724a
().
Glucose sensing by electrogenerated chemiluminescence of glucose-dehydrogenase produced NADH on electrodeposited redox hydrogel. In Bioelectrochemistry (Vol. 82, Issue 1, p. 63-68). https://doi.org/10.1016/j.bioelechem.2011.05.005
().
Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices. In Analytical Chemistry (Vol. 83, Issue 7, p. 2824-2828). https://doi.org/10.1021/ac200297r
().
Opto-electrochemical nanosensor array for remote DNA detection. In Analyst (Vol. 136, Issue 2, p. 327-331). https://doi.org/10.1039/c0an00501k
().
Soft mechanochemical synthesis of MgFe2 O4 nanoparticles from the mixture of α-Fe2 O3 with Mg(OH)2 and Fe(OH)3 with Mg(OH)2 . In Materials Science and Technology (Vol. 26, Issue 8, p. 968-974). https://doi.org/10.1179/174328409X415020
().
Lithography by scanning electrochemical microscopy with a multiscaled electrode. In Analytical Chemistry (Vol. 82, Issue 12, p. 5169-5175). https://doi.org/10.1021/ac100399q
().
Electrochemiluminescence of Ru (bpy)3 2 + loaded in Nafion Langmuir-Blodgett films: Role of the interfacial ultrathin film. In Journal of Electroanalytical Chemistry (Vol. 640, Issue 1-2, p. 35-41). https://doi.org/10.1016/j.jelechem.2009.12.029
().
Electrochemical bromination of peracetylated d-glucal: Effect of DMSO on chemoselectivity. In Electrochimica Acta (Vol. 55, Issue 3, p. 965-969). https://doi.org/10.1016/j.electacta.2009.09.057
().
Fluorescence correlation spectroscopy on nano-fakir surfaces. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE (Vol. 7571, p. 757114). https://doi.org/10.1117/12.842763
().
Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. In Analytical and Bioanalytical Chemistry (Vol. 396, Issue 1, p. 53-71). https://doi.org/10.1007/s00216-009-3211-0
().
Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle. In Optics Express (Vol. 17, Issue 26, p. 24030-24035). https://doi.org/10.1364/OE.17.024030
().
Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. In Optics Express (Vol. 17, Issue 21, p. 19085-19092). https://doi.org/10.1364/OE.17.019085
().
Fabrication of a macroporous microwell array for surface-enhanced raman scattering. In Advanced Functional Materials (Vol. 19, Issue 19, p. 3129-3135). https://doi.org/10.1002/adfm.200900752
().
Differential photoluminescent and electrochemiluminescent detection of anions with a modified ruthenium(II)-bipyridyl complex. In Chemistry - A European Journal (Vol. 15, Issue 20, p. 5145-5152). https://doi.org/10.1002/chem.200802544
().
Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. In Journal of the American Chemical Society (Vol. 131, Issue 17, p. 6088-6089). https://doi.org/10.1021/ja901876z
().
Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array. In Journal of Physical Chemistry C (Vol. 113, Issue 3, p. 874-881). https://doi.org/10.1021/jp808839f
().
Mechanochemical synthesis of stoichiometric MgFe 2 O 4 spinel. In Journal of Materials Science: Materials in Electronics (Vol. 20, Issue 8, p. 782-787). https://doi.org/10.1007/s10854-008-9802-2
().
Electrogenerated chemiluminescence in an electrodeposited redox hydrogel. In Electrochemistry Communications (Vol. 11, Issue 3, p. 599-602). https://doi.org/10.1016/j.elecom.2008.12.015
().
Epifluorescence imaging of electrochemically switchable langmuir-blodgett films of nafion. In Langmuir (Vol. 24, Issue 12, p. 6367-6374). https://doi.org/10.1021/la703998e
().
Ultrasharp optical-fiber nanoprobe array for raman local-enhancement imaging. In Small (Vol. 4, Issue 1, p. 96-99). https://doi.org/10.1002/smll.200700526
().
Electrochemical bromination of peracetylated glycals. In Advanced Synthesis and Catalysis (Vol. 350, Issue 1, p. 29-34). https://doi.org/10.1002/adsc.200700310
().
A new technique to in vivo study the corneocyte features at the surface of the skin. In Skin Research and Technology (Vol. 14, Issue 4, p. 468-471). https://doi.org/10.1111/j.1600-0846.2008.00315.x
().
Carbon nanotube fiber microelectrodes: Design, characterization, and optimization. In Journal of Nanoscience and Nanotechnology (Vol. 7, Issue 10, p. 3373-3377). https://doi.org/10.1166/jnn.2007.828
().
Optimized carbon nanotube fiber microelectrodes as potential analytical tools. In Analytical and Bioanalytical Chemistry (Vol. 389, Issue 2, p. 499-505). https://doi.org/10.1007/s00216-007-1467-9
().
Optical tweezers in interaction with an apertureless probe. In Journal of Applied Physics (Vol. 102, Issue 2, p. 024915). https://doi.org/10.1063/1.2759892
().
Macroporous ultramicroelectrodes for improved electroanalytical measurements. In Analytical Chemistry (Vol. 79, Issue 2, p. 533-539). https://doi.org/10.1021/ac0615854
().
Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle. In Review of Scientific Instruments (Vol. 78, Issue 5, p. 053709). https://doi.org/10.1063/1.2736346
().
Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. In ChemPhysChem (Vol. 7, Issue 6, p. 1322-1327). https://doi.org/10.1002/cphc.200500626
().
Development of an ordered microarray of electrochemiluminescent nanosensors. In Measurement Science and Technology (Vol. 17, Issue 5, p. 1211-1219). https://doi.org/10.1088/0957-0233/17/5/S45
().
Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. In Bioelectrochemistry (Vol. 69, Issue 1, p. 25-33). https://doi.org/10.1016/j.bioelechem.2005.10.002
().
Microarrays of near-field optical probes with adjustable dimensions. In Ultramicroscopy (Vol. 106, Issue 2, p. 57-65). https://doi.org/10.1016/j.ultramic.2005.06.060
().
Far-field characterization of ordered arrays of subwavelength apertures with adjustable dimensions. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5855 PART I, p. 246-249). https://doi.org/10.1117/12.623864
().
Ordered arrays of near-field optical probes. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5838, p. 1-9). https://doi.org/10.1117/12.607838
().
Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle. In Analytical Chemistry (Vol. 76, Issue 24, p. 7202-7210). https://doi.org/10.1021/ac049017g
().
Fabrication, characterization, and far-field optical properties of an ordered array of nanoapertures. In Nano Letters (Vol. 4, Issue 10, p. 1965-1968). https://doi.org/10.1021/nl048824s
().
Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array. In Electrochimica Acta (Vol. 49, Issue 22-23 SPEC. ISS., p. 3751-3757). https://doi.org/10.1016/j.electacta.2004.01.084
().
Electrochemical modulation of remote fluorescence imaging at an ordered opto-electrochemical nanoaperture array. In ChemPhysChem (Vol. 5, Issue 8, p. 1125-1132). https://doi.org/10.1002/cphc.200400015
().
Development of an Ordered Array of Optoelectrochemical Individually Readable Sensors with Submicrometer Dimensions: Application to Remote Electrochemiluminescence Imaging. In Analytical Chemistry (Vol. 76, Issue 2, p. 357-364). https://doi.org/10.1021/ac034974w
().
Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. In Carcinogenesis (Vol. 25, Issue 4, p. 509-515). https://doi.org/10.1093/carcin/bgh046
().
Electrochemical Removal of Metal Cations from Wastewater Monitored by Differential Pulse Polarography. In Journal of Chemical Education (Vol. 81, Issue 2, p. 255-258). https://doi.org/10.1021/ed081p255
().
Fabrication of a sub-micrometer electrode array: Electrochemical characterization and mapping of an electroactive species by confocal Raman microspectroscopy. In Electroanalysis (Vol. 15, Issue 5-6, p. 548-555). https://doi.org/10.1002/elan.200390068
().
A simple student experiment for teaching surface electrochemistry: Adsorption of polyoxometalate on graphite electrodes. In Journal of Chemical Education (Vol. 79, Issue 3, p. 349-382). https://doi.org/10.1021/ed079p349
().
A fluorescence-based imaging-fiber electrode chemical sensor for hydrogen peroxide. In Analytica Chimica Acta (Vol. 404, Issue 2, p. 213-221). https://doi.org/10.1016/S0003-2670(99)00727-8
().
Amplification of the inflammatory cellular redox state by human immunodeficiency virus type 1-immunosuppressive Tat and gp160 proteins. In Journal of Virology (Vol. 73, Issue 2, p. 1447-1452). https://doi.org/10.1128/jvi.73.2.1447-1452.1999
().
Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an ultramicroelectrode. In Carcinogenesis (Vol. 18, Issue 3, p. 569-574). https://doi.org/10.1093/carcin/18.3.569
().
Phenylarsine oxide inhibits ex vivo HIV-1 expression. In Biomedicine and Pharmacotherapy (Vol. 51, Issue 10, p. 430-438). https://doi.org/10.1016/S0753-3322(97)82321-9
().