Image
Téléphone
05 56 84 66 20
Groupe de recherche
NanoSystèmes Analytiques
Statut
Permanent
Poste
Enseignant-chercheur
Batiment
ENSMAC
Etage
1°
My research focuses on various aspects of electrochemiluminescence (ECL), including:
•The development of (bio)analytical methods and of high-resolution imaging techniques based on ECL.
•The development of photoinduced electrochemiluminescence(ECL without electrical activation), with applications in analytical and imaging technologies.
•The fundamental investigation of ECL mechanisms, exploring the thermodynamic and kinetic properties of different luminophores and their reaction pathways.
•The development of optical fiber sensors
Publications
(). Bipolar electrochemiluminescence: from fundamentals to emerging trends. In Chemical Communications (Vol. 61, Issue 64, p. 11896-11906). https://doi.org/10.1039/d5cc02825f
(). A double-layered paper-based analytical device for speciation and simultaneous determination of iron in waters within single-shot analysis. In Talanta Open (Vol. 11, p. 100458). https://doi.org/10.1016/j.talo.2025.100458
(). Photoelectrochemical Charge Transfer Imaging at Nanoscale Catalysts. In ACS Energy Letters (Vol. 10, Issue 7, p. 3519-3525). https://doi.org/10.1021/acsenergylett.5c01296
(). Wireless electroanalysis of mycotoxins with hybrid light-emitting devices based on molecularly imprinted polymers. In Sensors and Actuators B Chemical (Vol. 433, p. 137566). https://doi.org/10.1016/j.snb.2025.137566
(). ECL-Based Readout of Electric Field-Induced Fine-Tuning of Redox Activity. In Chemelectrochem (Vol. 12, Issue 11, p. e202500012). https://doi.org/10.1002/celc.202500012
(). Bright and Stable Electrochemiluminescence by Heterobimetallic IrIII-MI (MI = CuI, AuI) Complexes. In Advanced Optical Materials (Vol. 13, Issue 14, p. 2403430). https://doi.org/10.1002/adom.202403430
(). Spatial Profiling of Multiple Enzymatic Activities at Single Tissue Sections via Fenton-Promoted Electrochemiluminescence. In Journal of the American Chemical Society (Vol. 147, Issue 11, p. 9610-9619). https://doi.org/10.1021/jacs.4c17749
(). Overcoming kinetic barriers of remote electrochemiluminescence on boron-doped diamond via catalytic coreactant oxidation. In Chemical Communications (Vol. 61, Issue 19, p. 3900-3903). https://doi.org/10.1039/d5cc00270b
(). Single-Molecule Electrochemiluminescence Imaging of Plasmonic Hot Spot Reactivity. In Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202508266
(). Light-Emitting Diodes as Wireless Optical Transducers of Chemical Information. In Chemphotochem. https://doi.org/10.1002/cptc.202500050
(). Magnetoelectrochemical Rotation of Light Emitting Graphene Monolayers. In Small. https://doi.org/10.1002/smll.202500778
(). Strong NIR electrochemiluminescence from lanthanide ions sensitized with a carbon-rich ruthenium chelate. In Inorganic Chemistry Frontiers. https://doi.org/10.1039/d5qi00450k
(). Transparent Single-Layer Graphene Electrodes for Deciphering and Enhancing Microbead-Based Electrochemiluminescence Immunoassay. In Small. https://doi.org/10.1002/smll.202506599
(). Stimuli-Responsive DNA Nanomachines for Intracellular Targeted Electrochemiluminescence Imaging in Single Cells. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202421658
(). Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages. In Electrochem (Vol. 5, Issue 4, p. 407-420). https://doi.org/10.3390/electrochem5040027
(). Photoinduced Electrochemiluminescence Immunoassays. In Analytical Chemistry (Vol. 96, Issue 45, p. 18262-18268). https://doi.org/10.1021/acs.analchem.4c04662
(). Self-Powered Electrochemiluminescence for Imaging the Corrosion of Protective Coating of Metal and Quantitative Analysis. In Angewandte Chemie - International Edition (Vol. 63, Issue 45, p. e202411764). https://doi.org/10.1002/anie.202411764
(). Electrocatalytic amplification of coreactant electrochemiluminescence using redox mediators. In Electrochimica Acta (Vol. 499, p. 144677). https://doi.org/10.1016/j.electacta.2024.144677
(). Enhanced Electrochemiluminescence at the Gas/Liquid Interface of Bubbles Propelled into Solution. In Journal of the American Chemical Society (Vol. 146, Issue 32, p. 22724-22735). https://doi.org/10.1021/jacs.4c07566
(). Light Conversion by Electrochemiluminescence at Semiconductor Surfaces. In Accounts of Chemical Research (Vol. 57, Issue 15, p. 2144-2153). https://doi.org/10.1021/acs.accounts.4c00273
(). Electrochemiluminescence Microscopy. In Angewandte Chemie - International Edition (Vol. 63, Issue 29, p. e202407588). https://doi.org/10.1002/anie.202407588
(). Thickness-Resolved Electrochemiluminescence Microscopy of Extracellular Matrix at Tumor Tissues for Rapid Cancer Diagnosis. In ACS Applied Materials and Interfaces (Vol. 16, Issue 25, p. 32078-32086). https://doi.org/10.1021/acsami.4c05735
(). Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. In ChemPhysChem (Vol. 25, Issue 12, p. e202400133). https://doi.org/10.1002/cphc.202400133
(). Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity. In Chemistry - A European Journal (Vol. 30, Issue 29, p. e202400078). https://doi.org/10.1002/chem.202400078
(). Complex electrochemiluminescence patterns shaped by hydrodynamics at a rotating bipolar electrode. In Chemical Science (Vol. 15, Issue 23, p. 8723-8730). https://doi.org/10.1039/d4sc02528h
(). Shadow electrochemiluminescence imaging of giant liposomes opening at polarized electrodes. In Analyst (Vol. 149, Issue 12, p. 3317-3324). https://doi.org/10.1039/d4an00470a
(). Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes. In Electrochimica Acta (Vol. 484, p. 143957). https://doi.org/10.1016/j.electacta.2024.143957
(). Off-Grid Electrogenerated Chemiluminescence with Customized p-i-n Photodiodes. In Small (Vol. 20, Issue 14, p. 2308023). https://doi.org/10.1002/smll.202308023
(). Wireless rotating bipolar electrochemiluminescence for enzymatic detection. In Analyst (Vol. 149, Issue 9, p. 2756-2761). https://doi.org/10.1039/d4an00365a
(). Bifunctional TEMPO-based catalysis boosts luminol electrochemiluminescence for cholesterol sensing. In Sensors and Actuators B: Chemical (Vol. 403, p. 135186). https://doi.org/10.1016/j.snb.2023.135186
(). Wireless Magnetoelectrochemical Induction of Rotational Motion. In Advanced Science (Vol. 11, Issue 9, p. 2306635). https://doi.org/10.1002/advs.202306635
(). Near-IR Photoinduced Electrochemiluminescence Imaging with Structured Silicon Photoanodes. In ACS Applied Materials and Interfaces (Vol. 16, Issue 9, p. 11722-11729). https://doi.org/10.1021/acsami.3c19029
(). Light-emitting bipolar electrochemistry: a straightforward way to illustrate thermodynamic aspects to students. In Journal of Solid State Electrochemistry (Vol. 28, Issue 3-4, p. 1225-1231). https://doi.org/10.1007/s10008-023-05690-9
(). All-Optical Electrochemiluminescence at Metal-Insulator-Semiconductor Diodes. In Journal of Physical Chemistry Letters (Vol. 15, Issue 1, p. 148-155). https://doi.org/10.1021/acs.jpclett.3c03220
(). Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry. In ChemElectroChem. https://doi.org/10.1002/celc.202400522
(). Bipolar electrochemiluminescence at the water/organic interface. In Chemical Science. https://doi.org/10.1039/d4sc06103a
(). Recent advances in electrochemiluminescence immunosensing. In Sensors and Diagnostics. https://doi.org/10.1039/d4sd00272e
(). Enhanced Electrochemiluminescence by Knocking Out Gold Active Sites. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202421185
(). Electrochemiluminescence Enhanced by a Non-Emissive Dual Redox Mediator. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202412097
(). Designable Electrochemiluminescence Patterning for Renewable and Enhanced Bioimaging. In Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.202410825
(). Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. In Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-024-05133-y
(). Optics Determines the Electrochemiluminescence Signal of Bead-Based Immunoassays. In ACS Sensors (Vol. 8, Issue 12, p. 4782-4791). https://doi.org/10.1021/acssensors.3c01878
(). Modulation of circularly polarized luminescence by swelling of microgels functionalized with enantiopure [Ru(bpy)3 ]2+ luminophores. In Chemical Communications (Vol. 60, Issue 13, p. 1743-1746). https://doi.org/10.1039/d3cc04391f
(). Redox-mediated electrochemiluminescence enhancement for bead-based immunoassay. In Chemical Science (Vol. 15, Issue 3, p. 1150-1158). https://doi.org/10.1039/d3sc06357g
(). Infrared photoinduced electrochemiluminescence microscopy of single cells. In Chemical Science (Vol. 15, Issue 6, p. 2055-2061). https://doi.org/10.1039/d3sc05983a
(). Luminescent Metal–Organic Frameworks for Electrochemiluminescent Detection of Water Pollutants. In Materials (Vol. 16, Issue 23, p. 7502). https://doi.org/10.3390/ma16237502
(). Dynamic Mapping of Electrochemiluminescence Reactivity in Space: Application to Bead-Based Assays. In Analytical Chemistry (Vol. 95, Issue 42, p. 15700-15706). https://doi.org/10.1021/acs.analchem.3c02960
(). Tris(2,2’-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. In Analytical and Bioanalytical Chemistry (Vol. 415, Issue 24, p. 5875-5898). https://doi.org/10.1007/s00216-023-04876-4
(). Methods and strategies for robust electrochemiluminescence signal quantification. In Current Opinion in Electrochemistry (Vol. 41, p. 101375). https://doi.org/10.1016/j.coelec.2023.101375
(). Local reactivity of metal-insulator-semiconductor photoanodes imaged by photoinduced electrochemiluminescence microscopy. In Chemical Communications (Vol. 59, Issue 82, p. 12262-12265). https://doi.org/10.1039/d3cc03702a
(). Endogenous and exogenous wireless multimodal light-emitting chemical devices. In Chemical Science (Vol. 14, Issue 39, p. 10664-10670). https://doi.org/10.1039/d3sc03678b
(). All-Optical Electrochemiluminescence. In Journal of the American Chemical Society (Vol. 145, Issue 31, p. 17420-17426). https://doi.org/10.1021/jacs.3c05856
(). Resistance measurements for the wireless evaluation of electrocatalytic activity. In Electrochimica Acta (Vol. 458, p. 142506). https://doi.org/10.1016/j.electacta.2023.142506
(). Bimodal Electrochemiluminescence Microscopy of Single Cells. In Analytical Chemistry (Vol. 95, Issue 18, p. 7372-7378). https://doi.org/10.1021/acs.analchem.3c00869
(). Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. In Chemical and Biomedical Imaging (Vol. 1, Issue 1, p. 58-65). https://doi.org/10.1021/cbmi.3c00003
(). Ultrasensitive Imaging of Cells and Sub-Cellular Entities by Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 62, Issue 16, p. e202218574). https://doi.org/10.1002/anie.202218574
(). Upconversion photoinduced electrochemiluminescence of luminol-H2 O2 at Si/SiOx /Ni photoanodes. In Electrochimica Acta (Vol. 444, p. 142013). https://doi.org/10.1016/j.electacta.2023.142013
(). Electrochemiluminescence Amplification in Bead-Based Assays Induced by a Freely Diffusing Iridium(III) Complex. In ACS Sensors (Vol. 8, Issue 2, p. 933-939). https://doi.org/10.1021/acssensors.2c02697
(). Wireless Electronic Light Emission: An Introduction to Bipolar Electrochemistry. In Journal of Chemical Education (Vol. 100, Issue 2, p. 767-773). https://doi.org/10.1021/acs.jchemed.2c00573
(). Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy. In Angewandte Chemie - International Edition (Vol. 62, Issue 6, p. e202215078). https://doi.org/10.1002/anie.202215078
(). Benzothioxanthene Dicarboximide as a Tuneable Electrogenerated Chemiluminescence Dye. In ChemElectroChem (Vol. 9, Issue 24, p. e202200967). https://doi.org/10.1002/celc.202200967
(). High Electrochemiluminescence from Ru(bpy)3 2+ Embedded Metal–Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. In Advanced Science (Vol. 9, Issue 35, p. 2204715). https://doi.org/10.1002/advs.202204715
(). Design of optoelectrodes for the remote imaging of cells and in situ electrochemical detection of neurosecretory events. In Bioelectrochemistry (Vol. 148, p. 108262). https://doi.org/10.1016/j.bioelechem.2022.108262
(). Boosting the electrochemiluminescence of luminol-O2 system by high-intensity focused ultrasound. In Analytical and Bioanalytical Chemistry (Vol. 414, Issue 29-30, p. 8309-8315). https://doi.org/10.1007/s00216-022-04365-0
(). Wireless electrochemical light emission in ultrathin 2D nanoconfinements. In Chemical Science (Vol. 13, Issue 48, p. 14277-14284). https://doi.org/10.1039/d2sc04670a
(). Enhanced electrochemiluminescence at microgel-functionalized beads. In Biosensors and Bioelectronics (Vol. 216, p. 114640). https://doi.org/10.1016/j.bios.2022.114640
(). Recent advances in electrochemiluminescence imaging analysis. In eScience (Vol. 2, Issue 6, p. 591-605). https://doi.org/10.1016/j.esci.2022.10.004
(). Electrochemiluminescence microscopy: From single objects to living cells. In Current Opinion in Electrochemistry (Vol. 35, p. 101096). https://doi.org/10.1016/j.coelec.2022.101096
(). Electrochemiluminescent enantioselective detection with chiral-imprinted mesoporous metal surfaces. In Chemical Communications (Vol. 58, Issue 76, p. 10707-10710). https://doi.org/10.1039/d2cc02562k
(). Micropatterning of electrochemiluminescent polymers based on multipolar Ru-complex two-photon initiators. In Chemical Communications (Vol. 58, Issue 69, p. 9678-9681). https://doi.org/10.1039/d2cc04159f
(). Interplay between electrochemistry and optical imaging: The whole is greater than the sum of the parts. In Current Opinion in Electrochemistry (Vol. 34, p. 101007). https://doi.org/10.1016/j.coelec.2022.101007
(). Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. In Journal of Physical Chemistry Letters (Vol. 13, Issue 24, p. 5538-5544). https://doi.org/10.1021/acs.jpclett.2c01512
(). Anti-Stokes photoinduced electrochemiluminescence at a photocathode. In Chemical Communications (Vol. 58, Issue 47, p. 6686-6688). https://doi.org/10.1039/d2cc01804g
(). Metal-Insulator-Semiconductor Anodes for Ultrastable and Site-Selective Upconversion Photoinduced Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 61, Issue 20, p. e202201865). https://doi.org/10.1002/anie.202201865
(). Sensitive electrochemiluminescence biosensing of polynucleotide kinase using the versatility of two-dimensional Ti3 C2 TX MXene nanomaterials. In Analytica Chimica Acta (Vol. 1191, p. 339346). https://doi.org/10.1016/j.aca.2021.339346
(). Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. In Analytical Chemistry (Vol. 94, Issue 3, p. 1686-1696). https://doi.org/10.1021/acs.analchem.1c04238
(). Electrochemiluminescence with semiconductor (nano)materials. In Chemical Science (Vol. 2022, Issue 9, p. 2528-2550). https://doi.org/10.1039/D1SC06987J
(). Electrochemiluminescence Sensors in Bioanalysis. In Encyclopedia of Sensors and Biosensors: Volume 1-4, First Edition (Vol. 1-4, p. 317-340). https://doi.org/10.1016/B978-0-12-822548-6.00147-3
(). Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. In Cell Reports Physical Science (Vol. 2, Issue 12, p. 100670). https://doi.org/10.1016/j.xcrp.2021.100670
(). Enhanced Cathodic Electrochemiluminescence of Luminol on Iron Electrodes. In Analytical Chemistry (Vol. 93, Issue 49, p. 16425-16431). https://doi.org/10.1021/acs.analchem.1c03139
(). Single Biomolecule Imaging by Electrochemiluminescence. In Journal of the American Chemical Society (Vol. 143, Issue 43, p. 17910-17914). https://doi.org/10.1021/jacs.1c06673
(). Lorentz Force-Driven Autonomous Janus Swimmers. In Journal of the American Chemical Society (Vol. 143, Issue 32, p. 12708-12714). https://doi.org/10.1021/jacs.1c05589
(). Shadow Electrochemiluminescence Microscopy of Single Mitochondria. In Angewandte Chemie - International Edition (Vol. 60, Issue 34, p. 18742-18749). https://doi.org/10.1002/anie.202105867
(). A microscopy technique that images single reaction events in total darkness. In Nature (Vol. 596, Issue 7871, p. 194-195). https://doi.org/10.1038/d41586-021-02098-1
(). Rational Design of Electrochemiluminescent Devices. In Accounts of Chemical Research (Vol. 54, Issue 14, p. 2936-2945). https://doi.org/10.1021/acs.accounts.1c00230
(). Photoinduced electrochemiluminescence at nanostructured hematite electrodes. In Electrochimica Acta (Vol. 381, p. 138238). https://doi.org/10.1016/j.electacta.2021.138238
(). Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. In ChemPhysChem (Vol. 22, Issue 11, p. 1094-1100). https://doi.org/10.1002/cphc.202100112
(). Editorial: Electrochemiluminescence: From Fundamentals to Applications. In Frontiers in Chemistry (Vol. 9, p. 706465). https://doi.org/10.3389/fchem.2021.706465
(). Electrochemiluminescence Loss in Photobleaching. In Angewandte Chemie - International Edition (Vol. 60, Issue 14, p. 7686-7690). https://doi.org/10.1002/anie.202015030
(). Electrochemiluminescence microscopy of cells: Essential role of surface regeneration. In Analytical Chemistry (Vol. 93, Issue 3, p. 1652-1657). https://doi.org/10.1021/acs.analchem.0c05123
(). Single-Particle Tracking Method in Fluorescence Microscopy to Monitor Bioenergetic Responses of Individual Mitochondria. In Methods in Molecular Biology (Vol. 2276, p. 153-163). https://doi.org/10.1007/978-1-0716-1266-8_11
(). Bipolar (Bio)electroanalysis. In Annual Review of Analytical Chemistry (Vol. 14, p. 65-86). https://doi.org/10.1146/annurev-anchem-090820-093307
(). Electrochemistry-Based Light-Emitting Mobile Systems. In ChemElectroChem (Vol. 7, Issue 24, p. 4853-4862). https://doi.org/10.1002/celc.202001104
(). Spatially resolved electrochemiluminescence through a chemical lens. In Chemical Science (Vol. 11, Issue 38, p. 10496-10500). https://doi.org/10.1039/d0sc04210b
(). Wireless enhanced electrochemiluminescence at a bipolar microelectrode in a solid-state micropore. In Journal of the Electrochemical Society (Vol. 167, Issue 13, p. 137509). https://doi.org/10.1149/1945-7111/abbbc1
(). Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays. In Biosensors and Bioelectronics (Vol. 165, p. 112372). https://doi.org/10.1016/j.bios.2020.112372
(). Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. In Chemical Communications (Vol. 56, Issue 68, p. 9771-9774). https://doi.org/10.1039/d0cc04156d
(). Enhancing the sensitivity of plasmonic optical fiber sensors by analyzing the distribution of the optical modes intensity. In Optics Express (Vol. 28, Issue 20, p. 28740-28749). https://doi.org/10.1364/OE.399856
(). Luminescence Amplification at BiVO4 Photoanodes by Photoinduced Electrochemiluminescence. In Angewandte Chemie - International Edition (Vol. 59, Issue 35, p. 15157-15160). https://doi.org/10.1002/anie.202004634
(). Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. In ACS Applied Materials and Interfaces (Vol. 12, Issue 32, p. 36548-36557). https://doi.org/10.1021/acsami.0c09816
(). Quantum Nuts: Two Shells Are Better than One to Achieve Highly Efficient Electrochemiluminescence. In ACS Central Science (Vol. 6, Issue 7, p. 1043-1045). https://doi.org/10.1021/acscentsci.0c00802
(). Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxene-Core Dyes. In Chemistry - A European Journal (Vol. 26, Issue 38, p. 8407-8416). https://doi.org/10.1002/chem.202000474
(). Electrochemiluminescence reaction pathways in nanofluidic devices. In Analytical and Bioanalytical Chemistry (Vol. 412, Issue 17, p. 4067-4075). https://doi.org/10.1007/s00216-020-02630-8
(). Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. In Chemical Science (Vol. 11, Issue 28, p. 7438-7443). https://doi.org/10.1039/d0sc02431g
(). Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. In Angewandte Chemie - International Edition (Vol. 59, Issue 26, p. 10416-10420). https://doi.org/10.1002/anie.202002323
(). Chiroptical detection of a model ruthenium dye in water by circularly polarized-electrochemiluminescence. In Chemical Communications (Vol. 56, Issue 44, p. 5989-5992). https://doi.org/10.1039/d0cc01571g
(). Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. In Chemical Science (Vol. 11, Issue 17, p. 4508-4515). https://doi.org/10.1039/d0sc00853b
(). Remote Actuation of a Light-Emitting Device Based on Magnetic Stirring and Wireless Electrochemistry. In ChemPhysChem (Vol. 21, Issue 7, p. 600-604). https://doi.org/10.1002/cphc.202000019
(). Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. In Journal of Analysis and Testing (Vol. 4, Issue 2, p. 107-113). https://doi.org/10.1007/s41664-020-00131-2
(). Electrosynthesis of gradient TiO2 nanotubes and rapid screening using scanning photoelectrochemical microscopy. In Sustainable Energy and Fuels (Vol. 4, Issue 3, p. 1099-1104). https://doi.org/10.1039/c9se00895k
(). Multiplexed remote SPR detection of biological interactions through optical fiber bundles. In Sensors (Switzerland) (Vol. 20, Issue 2, p. 511). https://doi.org/10.3390/s20020511
(). Chapter 1: Introduction and Overview of Electrogenerated Chemiluminescence. In RSC Detection Science (Vol. 2020-January, Issue 15, p. 1-28). https://doi.org/10.1039/9781788015776-00001
(). Dual microelectrodes decorated with nanotip arrays: Fabrication, characterization and spectroelectrochemical sensing. In Electrochimica Acta (Vol. 328, p. 135105). https://doi.org/10.1016/j.electacta.2019.135105
(). Erratum: Bright Electrochemiluminescence Tunable in the Near-Infrared of Chiral Cationic Helicene Chromophores (The Journal of Physical Chemistry C (2017) 121:1 (785−792) DOI: 10.1021/acs.jpcc.6b11831). In Journal of Physical Chemistry C (Vol. 123, Issue 48, p. 29496-29497). https://doi.org/10.1021/acs.jpcc.9b10240
(). Correction to: Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity (Journal of Analysis and Testing, (2019), 3, 2, (160-165), 10.1007/s41664-019-00094-z). In Journal of Analysis and Testing (Vol. 3, Issue 4, p. 341). https://doi.org/10.1007/s41664-019-00105-z
(). Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. In Journal of Physical Chemistry Letters (Vol. 10, Issue 18, p. 5318-5324). https://doi.org/10.1021/acs.jpclett.9b02188
(). Photoinduced Electrochemiluminescence at Silicon Electrodes in Water. In Journal of the American Chemical Society (Vol. 141, Issue 33, p. 13013-13016). https://doi.org/10.1021/jacs.9b06743
(). Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. In Current Opinion in Electrochemistry (Vol. 16, p. 28-34). https://doi.org/10.1016/j.coelec.2019.04.004
(). Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. In Analytical Chemistry (Vol. 91, Issue 14, p. 8900-8907). https://doi.org/10.1021/acs.analchem.9b00559
(). Reactive oxygen species generated by cold atmospheric plasmas in aqueous solution: Successful electrochemical monitoring in situ under a high voltage system. In Analytical Chemistry (Vol. 91, Issue 13, p. 8002-8007). https://doi.org/10.1021/acs.analchem.9b01912
(). Corrigendum to: Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence (Chemistry - A European Journal, (2016), 22, 51, (18394-18403), 10.1002/chem.201603591). In Chemistry - A European Journal (Vol. 25, Issue 34, p. 8169). https://doi.org/10.1002/chem.201901658
(). Electrochemiluminescence Imaging for Bioanalysis. In Annual Review of Analytical Chemistry (Vol. 12, p. 275-295). https://doi.org/10.1146/annurev-anchem-061318-115226
(). Corrigendum to: Electrogenerated Chemiluminescence of Cationic Triangulene Dyes: Crucial Influence of the Core Heteroatoms (Chemistry - A European Journal, (2015), 21, 52, (19243-19249), 10.1002/chem.201501738). In Chemistry - A European Journal (Vol. 25, Issue 30, p. 7402). https://doi.org/10.1002/chem.201901657
(). Circularly-Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. In Angewandte Chemie - International Edition (Vol. 58, Issue 21, p. 6952-6956). https://doi.org/10.1002/anie.201901303
(). Highly parallel remote SPR detection of DNA hybridization by micropillar optical arrays. In Analytical and Bioanalytical Chemistry (Vol. 411, Issue 11, p. 2249-2259). https://doi.org/10.1007/s00216-019-01689-2
(). Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity. In Journal of Analysis and Testing (Vol. 3, Issue 2, p. 160-165). https://doi.org/10.1007/s41664-019-00094-z
(). Potential-Induced Fine-Tuning of the Enantioaffinity of Chiral Metal Phases. In Angewandte Chemie - International Edition (Vol. 58, Issue 11, p. 3471-3475). https://doi.org/10.1002/anie.201812057
(). Microwell array integrating nanoelectrodes for coupled opto-electrochemical monitorings of single mitochondria. In Biosensors and Bioelectronics (Vol. 126, p. 672-678). https://doi.org/10.1016/j.bios.2018.11.036
(). Biochemical sensing based on bipolar electrochemistry. In Bioelectrochemistry: Design and Applications of Biomaterials (p. 101-120). https://doi.org/10.1515/9783110570526-006
(). Polarization induced electro-functionalization of pore walls: A contactless technology. In Biosensors (Vol. 9, Issue 4, p. 121). https://doi.org/10.3390/bios9040121
(). Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. In Journal of the American Chemical Society (Vol. 140, Issue 44, p. 14753-14760). https://doi.org/10.1021/jacs.8b08080
(). Eosin-Mediated Alkylsulfonyl Cyanation of Olefins. In Organic Letters (Vol. 20, Issue 15, p. 4521-4525). https://doi.org/10.1021/acs.orglett.8b01828
(). C-Functionalized Cationic Diazaoxatriangulenes: Late-Stage Synthesis and Tuning of Physicochemical Properties. In Chemistry - A European Journal (Vol. 24, Issue 40, p. 10186-10195). https://doi.org/10.1002/chem.201801486
(). Tuning Electrochemiluminescence in Multistimuli Responsive Hydrogel Films. In Journal of Physical Chemistry Letters (Vol. 9, Issue 2, p. 340-345). https://doi.org/10.1021/acs.jpclett.7b03119
(). Activation of the TRPV1 thermoreceptor induced by modulated or unmodulated 1800 mhz radiofrequency field exposure. In Radiation Research (Vol. 189, Issue 1, p. 95-103). https://doi.org/10.1667/RR14877.1
(). A snapshot of the electrochemical reaction layer by using 3 dimensionally resolved fluorescence mapping. In Chemical Science (Vol. 9, Issue 32, p. 6622-6628). https://doi.org/10.1039/c8sc02011f
(). Current hot-spots and some more exotic topics. In Current Opinion in Electrochemistry (Vol. 7, p. A1-A4). https://doi.org/10.1016/j.coelec.2018.03.002
(). Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. In Physical Chemistry Chemical Physics (Vol. 20, Issue 14, p. 9198-9210). https://doi.org/10.1039/c8cp00264a
(). Enhanced annihilation electrochemiluminescence by nanofluidic confinement. In Chemical Science (Vol. 9, Issue 48, p. 8946-8950). https://doi.org/10.1039/c8sc03209b
(). Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. In Journal of the American Chemical Society (Vol. 139, Issue 46, p. 16830-16837). https://doi.org/10.1021/jacs.7b09260
(). Capillary-assisted bipolar electrochemistry: A focused mini review. In Electrophoresis (Vol. 38, Issue 21, p. 2687-2694). https://doi.org/10.1002/elps.201600568
(). Wireless light-emitting electrochemical rotors. In Journal of Physical Chemistry Letters (Vol. 8, Issue 19, p. 4930-4934). https://doi.org/10.1021/acs.jpclett.7b01899
(). Toward the analysis of mitochondria isolated from leukemic cells with electrochemically instrumented microwell arrays. In TRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems (p. 1624-1627). https://doi.org/10.1109/TRANSDUCERS.2017.7994374
(). Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil-Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels. In Langmuir (Vol. 33, Issue 29, p. 7231-7238). https://doi.org/10.1021/acs.langmuir.7b01585
(). Efficient Annihilation Electrochemiluminescence of Cationic Helicene Luminophores. In ChemElectroChem (Vol. 4, Issue 7, p. 1750-1756). https://doi.org/10.1002/celc.201600906
(). Spatially-resolved multicolor bipolar electrochemiluminescence. In Electrochemistry Communications (Vol. 77, p. 10-13). https://doi.org/10.1016/j.elecom.2017.02.006
(). Bright electrochemiluminescence tunable in the near-infrared of chiral cationic helicene chromophores. In Journal of Physical Chemistry C (Vol. 121, Issue 1, p. 785-792). https://doi.org/10.1021/acs.jpcc.6b11831
(). Full-Spectral Multiplexing of Bioluminescence Resonance Energy Transfer in Three TRPV Channels. In Biophysical Journal (Vol. 112, Issue 1, p. 87-98). https://doi.org/10.1016/j.bpj.2016.11.3197
(). Recent advances in bipolar electrochemistry. In Electroanalytical Chemistry: A Series of Advances, Volume 27 (p. 27-117). https://doi.org/10.1201/9781315270302
(). Co(III) complexes of (1,3-selenazol-2-yl)hydrazones and their sulphur analogues. In Dalton Transactions (Vol. 46, Issue 9, p. 2910-2924). https://doi.org/10.1039/c6dt04785h
(). Nano-structured optical fiber bundles for remote SPR detection: A first step toward in vivo biomolecular analysis. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 10323, p. 1032307). https://doi.org/10.1117/12.2262559
(). Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. In Physical Chemistry Chemical Physics (Vol. 18, Issue 48, p. 32697-32702). https://doi.org/10.1039/c6cp05688a
(). Combined local anodization of titanium and scanning photoelectrochemical mapping of TiO2 spot arrays. In Electrochimica Acta (Vol. 222, p. 84-91). https://doi.org/10.1016/j.electacta.2016.10.151
(). Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence. In Chemistry - A European Journal (Vol. 22, Issue 51, p. 18394-18403). https://doi.org/10.1002/chem.201603591
(). Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence. In Chemistry - A European Journal (Vol. 22, Issue 51, p. 18273). https://doi.org/10.1002/chem.201604489
(). Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. In Langmuir (Vol. 32, Issue 49, p. 12995-13002). https://doi.org/10.1021/acs.langmuir.6b03040
(). Essential Role of Electrode Materials in Electrochemiluminescence Applications. In ChemElectroChem (Vol. 3, Issue 12, p. 1990-1997). https://doi.org/10.1002/celc.201600602
(). Deciphering the Platinized Surface Reactivity to Improve the Detection of Hydrogen Peroxide in Bioanalyses. In ChemElectroChem (Vol. 3, Issue 12, p. 2288-2296). https://doi.org/10.1002/celc.201600558
(). Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7085-7094). https://doi.org/10.1007/s00216-016-9504-1
(). Analytical electrochemiluminescence. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7001-7002). https://doi.org/10.1007/s00216-016-9837-9
(). Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7003-7011). https://doi.org/10.1007/s00216-016-9606-9
(). Frontispiece: Bright Electrogenerated Chemiluminescence of a Bis-Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. In Chemistry - A European Journal (Vol. 22, Issue 36). https://doi.org/10.1002/chem.201683662
(). Bright Electrogenerated Chemiluminescence of a Bis-Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. In Chemistry - A European Journal (Vol. 22, Issue 36, p. 12702-12714). https://doi.org/10.1002/chem.201600413
(). PDMS microwells for multi-parametric monitoring of single mitochondria on a large scale: A study of their individual membrane potential and endogenous NADH. In Integrative Biology (United Kingdom) (Vol. 8, Issue 8, p. 836-843). https://doi.org/10.1039/c6ib00064a
(). Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. In Analyst (Vol. 141, Issue 14, p. 4299-4304). https://doi.org/10.1039/c6an00652c
(). Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence. In Analytical Chemistry (Vol. 88, Issue 12, p. 6585-6592). https://doi.org/10.1021/acs.analchem.6b01434
(). Dual-Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry. In ChemElectroChem (Vol. 3, Issue 3, p. 404-409). https://doi.org/10.1002/celc.201500402
(). Electric fields for generating unconventional motion of small objects. In Current Opinion in Colloid and Interface Science (Vol. 21, p. 57-64). https://doi.org/10.1016/j.cocis.2015.12.002
(). Saccharide-induced modulation of photoluminescence lifetime in microgels. In Physical Chemistry Chemical Physics (Vol. 18, Issue 25, p. 16812-16821). https://doi.org/10.1039/c6cp01523a
(). Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant. In Chemical Communications (Vol. 52, Issue 87, p. 12845-12848). https://doi.org/10.1039/c6cc07030b
(). Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. In RSC Advances (Vol. 6, Issue 82, p. 78457-78467). https://doi.org/10.1039/c6ra12791f
(). Applications of electrogenerated chemiluminescence in analytical chemistry. In Luminescence in Electrochemistry: Applications in Analytical Chemistry, Physics and Biology (p. 257-291). https://doi.org/10.1007/978-3-319-49137-0_8
(). Electrogenerated Chemiluminescence of Cationic Triangulene Dyes: Crucial Influence of the Core Heteroatoms. In Chemistry - A European Journal (Vol. 21, Issue 52, p. 19243-19249). https://doi.org/10.1002/chem.201501738
(). A Sensitive Electrochemiluminescence Immunosensor for Celiac Disease Diagnosis Based on Nanoelectrode Ensembles. In Analytical Chemistry (Vol. 87, Issue 24, p. 12080-12087). https://doi.org/10.1021/acs.analchem.5b02801
(). Shearforce positioning of nanoprobe electrode arrays for scanning electrochemical microscopy experiments. In Electrochimica Acta (Vol. 179, p. 45-56). https://doi.org/10.1016/j.electacta.2015.04.140
(). Differential Photoluminescent and Electrochemiluminescent Behavior for Resonance Energy Transfer Processes in Thermoresponsive Microgels. In Journal of Physical Chemistry B (Vol. 119, Issue 40, p. 12954-12961). https://doi.org/10.1021/acs.jpcb.5b06920
(). 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. In Chemical Science (Vol. 6, Issue 8, p. 4433-4437). https://doi.org/10.1039/c5sc01530h
(). Effects of 50Hz magnetic fields on gap junctional intercellular communication in NIH3T3 cells. In Bioelectromagnetics (Vol. 36, Issue 4, p. 287-293). https://doi.org/10.1002/bem.21908
(). Optical microwell arrays for large-scale studies of single mitochondria metabolic responses. In Methods in Molecular Biology (Vol. 1264, p. 47-58). https://doi.org/10.1007/978-1-4939-2257-4_5
(). Electrochemiluminescent swimmers for dynamic enzymatic sensing. In Chemical Communications (Vol. 50, Issue 71, p. 10202-10205). https://doi.org/10.1039/c4cc04105d
(). Electrochemical monitoring of the early events of hydrogen peroxide production by mitochondria. In Angewandte Chemie - International Edition (Vol. 53, Issue 26, p. 6655-6658). https://doi.org/10.1002/anie.201403096
(). Enhanced detection of hydrogen peroxide with platinized microelectrode arrays for analyses of mitochondria activities. In Electrochimica Acta (Vol. 126, p. 171-178). https://doi.org/10.1016/j.electacta.2013.11.104
(). Optical microwell array for large scale studies of single mitochondria metabolic responses. In Analytical and Bioanalytical Chemistry (Vol. 406, Issue 4, p. 931-941). https://doi.org/10.1007/s00216-013-7211-8
(). Lighting up redox propulsion with luminol electrogenerated chemiluminescence. In ChemElectroChem (Vol. 1, Issue 1, p. CELC201300042). https://doi.org/10.1002/celc.201300042
(). Mapping electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays. In Chemical Science (Vol. 5, Issue 6, p. 2568-2572). https://doi.org/10.1039/c4sc00312h
(). Photochemical functionalisation of optical nanotips with a rhodamine chemosensor for remote through-fiber detection of Hg2+. In RSC Advances (Vol. 3, Issue 46, p. 24140-24145). https://doi.org/10.1039/c3ra45198d
(). Development of electrochemical microsensors for the monitoring of mitochondrial activities. In 2013 Transducers and Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS and EUROSENSORS 2013 (p. 1135-1138). https://doi.org/10.1109/Transducers.2013.6626972
(). Bipolar electrochemistry: from materials science to motion and beyond. In Accounts of Chemical Research (Vol. 46, Issue 11, p. 2513-2523). https://doi.org/10.1021/ar400039k
(). Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes. In Analytical Chemistry (Vol. 85, Issue 19, p. 8902-8909). https://doi.org/10.1021/ac402200p
(). Electrochemiluminescent polymer films with a suitable redox "turn-off" absorbance window for remote selective sensing of Hg 2+. In Analyst (Vol. 138, Issue 16, p. 4500-4504). https://doi.org/10.1039/c3an00545c
(). Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection. In Lab on a Chip (Vol. 13, Issue 15, p. 2956-2962). https://doi.org/10.1039/c3lc50335f
(). Monitoring metabolic responses of single mitochondria within poly(dimethylsiloxane) wells: Study of their endogenous reduced nicotinamide adenine dinucleotide evolution. In Analytical Chemistry (Vol. 85, Issue 10, p. 5146-5152). https://doi.org/10.1021/ac400494e
(). Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. In Journal of the American Chemical Society (Vol. 135, Issue 15, p. 5517-5520). https://doi.org/10.1021/ja401011j
(). Fiber-Optic Biosensors. In Chemical Sensors and Biosensors (p. 335-351). https://doi.org/10.1002/9781118561799.ch14
(). Oxygen Plasma Treatment of Platinized Ultramicroelectrodes Increases Sensitivity for Hydrogen Peroxide Detection on Mitochondria. In Electroanalysis (Vol. 25, Issue 3, p. 656-663). https://doi.org/10.1002/elan.201200409
(). Light-emitting electrochemical "swimmers". In Angewandte Chemie - International Edition (Vol. 51, Issue 45, p. 11284-11288). https://doi.org/10.1002/anie.201206227
(). Kinetic investigations of the electrochemical bromination of peracetylated d-glucal in organic solvents. In Electrochimica Acta (Vol. 56, Issue 27, p. 9968-9972). https://doi.org/10.1016/j.electacta.2011.08.085
(). Photopatterning of ultrathin electrochemiluminescent redox hydrogel films. In Chemical Communications (Vol. 47, Issue 32, p. 9125-9127). https://doi.org/10.1039/c1cc12724a
(). Glucose sensing by electrogenerated chemiluminescence of glucose-dehydrogenase produced NADH on electrodeposited redox hydrogel. In Bioelectrochemistry (Vol. 82, Issue 1, p. 63-68). https://doi.org/10.1016/j.bioelechem.2011.05.005
(). Fast and easy enzyme immobilization by photoinitiated polymerization for efficient bioelectrochemical devices. In Analytical Chemistry (Vol. 83, Issue 7, p. 2824-2828). https://doi.org/10.1021/ac200297r
(). Opto-electrochemical nanosensor array for remote DNA detection. In Analyst (Vol. 136, Issue 2, p. 327-331). https://doi.org/10.1039/c0an00501k
(). Soft mechanochemical synthesis of MgFe2 O4 nanoparticles from the mixture of α-Fe2 O3 with Mg(OH)2 and Fe(OH)3 with Mg(OH)2 . In Materials Science and Technology (Vol. 26, Issue 8, p. 968-974). https://doi.org/10.1179/174328409X415020
(). Lithography by scanning electrochemical microscopy with a multiscaled electrode. In Analytical Chemistry (Vol. 82, Issue 12, p. 5169-5175). https://doi.org/10.1021/ac100399q
(). Electrochemiluminescence of Ru (bpy)3 2 + loaded in Nafion Langmuir-Blodgett films: Role of the interfacial ultrathin film. In Journal of Electroanalytical Chemistry (Vol. 640, Issue 1-2, p. 35-41). https://doi.org/10.1016/j.jelechem.2009.12.029
(). Electrochemical bromination of peracetylated d-glucal: Effect of DMSO on chemoselectivity. In Electrochimica Acta (Vol. 55, Issue 3, p. 965-969). https://doi.org/10.1016/j.electacta.2009.09.057
(). Fluorescence correlation spectroscopy on nano-fakir surfaces. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE (Vol. 7571, p. 757114). https://doi.org/10.1117/12.842763
(). Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. In Analytical and Bioanalytical Chemistry (Vol. 396, Issue 1, p. 53-71). https://doi.org/10.1007/s00216-009-3211-0
(). Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle. In Optics Express (Vol. 17, Issue 26, p. 24030-24035). https://doi.org/10.1364/OE.17.024030
(). Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. In Optics Express (Vol. 17, Issue 21, p. 19085-19092). https://doi.org/10.1364/OE.17.019085
(). Fabrication of a macroporous microwell array for surface-enhanced raman scattering. In Advanced Functional Materials (Vol. 19, Issue 19, p. 3129-3135). https://doi.org/10.1002/adfm.200900752
(). Differential photoluminescent and electrochemiluminescent detection of anions with a modified ruthenium(II)-bipyridyl complex. In Chemistry - A European Journal (Vol. 15, Issue 20, p. 5145-5152). https://doi.org/10.1002/chem.200802544
(). Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. In Journal of the American Chemical Society (Vol. 131, Issue 17, p. 6088-6089). https://doi.org/10.1021/ja901876z
(). Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array. In Journal of Physical Chemistry C (Vol. 113, Issue 3, p. 874-881). https://doi.org/10.1021/jp808839f
(). Mechanochemical synthesis of stoichiometric MgFe 2 O 4 spinel. In Journal of Materials Science: Materials in Electronics (Vol. 20, Issue 8, p. 782-787). https://doi.org/10.1007/s10854-008-9802-2
(). Electrogenerated chemiluminescence in an electrodeposited redox hydrogel. In Electrochemistry Communications (Vol. 11, Issue 3, p. 599-602). https://doi.org/10.1016/j.elecom.2008.12.015
(). Epifluorescence imaging of electrochemically switchable langmuir-blodgett films of nafion. In Langmuir (Vol. 24, Issue 12, p. 6367-6374). https://doi.org/10.1021/la703998e
(). Electrochemical bromination of peracetylated glycals. In Advanced Synthesis and Catalysis (Vol. 350, Issue 1, p. 29-34). https://doi.org/10.1002/adsc.200700310
(). A new technique to in vivo study the corneocyte features at the surface of the skin. In Skin Research and Technology (Vol. 14, Issue 4, p. 468-471). https://doi.org/10.1111/j.1600-0846.2008.00315.x
(). Ultrasharp optical-fiber nanoprobe array for raman local-enhancement imaging. In Small (Vol. 4, Issue 1, p. 96-99). https://doi.org/10.1002/smll.200700526
(). Carbon nanotube fiber microelectrodes: Design, characterization, and optimization. In Journal of Nanoscience and Nanotechnology (Vol. 7, Issue 10, p. 3373-3377). https://doi.org/10.1166/jnn.2007.828
(). Optimized carbon nanotube fiber microelectrodes as potential analytical tools. In Analytical and Bioanalytical Chemistry (Vol. 389, Issue 2, p. 499-505). https://doi.org/10.1007/s00216-007-1467-9
(). Optical tweezers in interaction with an apertureless probe. In Journal of Applied Physics (Vol. 102, Issue 2, p. 024915). https://doi.org/10.1063/1.2759892
(). Macroporous ultramicroelectrodes for improved electroanalytical measurements. In Analytical Chemistry (Vol. 79, Issue 2, p. 533-539). https://doi.org/10.1021/ac0615854
(). Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle. In Review of Scientific Instruments (Vol. 78, Issue 5, p. 053709). https://doi.org/10.1063/1.2736346
(). Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. In ChemPhysChem (Vol. 7, Issue 6, p. 1322-1327). https://doi.org/10.1002/cphc.200500626
(). Development of an ordered microarray of electrochemiluminescent nanosensors. In Measurement Science and Technology (Vol. 17, Issue 5, p. 1211-1219). https://doi.org/10.1088/0957-0233/17/5/S45
(). Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. In Bioelectrochemistry (Vol. 69, Issue 1, p. 25-33). https://doi.org/10.1016/j.bioelechem.2005.10.002
(). Microarrays of near-field optical probes with adjustable dimensions. In Ultramicroscopy (Vol. 106, Issue 2, p. 57-65). https://doi.org/10.1016/j.ultramic.2005.06.060
(). Far-field characterization of ordered arrays of subwavelength apertures with adjustable dimensions. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5855 PART I, p. 246-249). https://doi.org/10.1117/12.623864
(). Ordered arrays of near-field optical probes. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5838, p. 1-9). https://doi.org/10.1117/12.607838
(). Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle. In Analytical Chemistry (Vol. 76, Issue 24, p. 7202-7210). https://doi.org/10.1021/ac049017g
(). Fabrication, characterization, and far-field optical properties of an ordered array of nanoapertures. In Nano Letters (Vol. 4, Issue 10, p. 1965-1968). https://doi.org/10.1021/nl048824s
(). Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array. In Electrochimica Acta (Vol. 49, Issue 22-23 SPEC. ISS., p. 3751-3757). https://doi.org/10.1016/j.electacta.2004.01.084
(). Electrochemical modulation of remote fluorescence imaging at an ordered opto-electrochemical nanoaperture array. In ChemPhysChem (Vol. 5, Issue 8, p. 1125-1132). https://doi.org/10.1002/cphc.200400015
(). Development of an Ordered Array of Optoelectrochemical Individually Readable Sensors with Submicrometer Dimensions: Application to Remote Electrochemiluminescence Imaging. In Analytical Chemistry (Vol. 76, Issue 2, p. 357-364). https://doi.org/10.1021/ac034974w
(). Electrochemical Removal of Metal Cations from Wastewater Monitored by Differential Pulse Polarography. In Journal of Chemical Education (Vol. 81, Issue 2, p. 255-258). https://doi.org/10.1021/ed081p255
(). Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. In Carcinogenesis (Vol. 25, Issue 4, p. 509-515). https://doi.org/10.1093/carcin/bgh046
(). Fabrication of a sub-micrometer electrode array: Electrochemical characterization and mapping of an electroactive species by confocal Raman microspectroscopy. In Electroanalysis (Vol. 15, Issue 5-6, p. 548-555). https://doi.org/10.1002/elan.200390068
(). A simple student experiment for teaching surface electrochemistry: Adsorption of polyoxometalate on graphite electrodes. In Journal of Chemical Education (Vol. 79, Issue 3, p. 349-382). https://doi.org/10.1021/ed079p349
(). A fluorescence-based imaging-fiber electrode chemical sensor for hydrogen peroxide. In Analytica Chimica Acta (Vol. 404, Issue 2, p. 213-221). https://doi.org/10.1016/S0003-2670(99)00727-8
(). Amplification of the inflammatory cellular redox state by human immunodeficiency virus type 1-immunosuppressive Tat and gp160 proteins. In Journal of Virology (Vol. 73, Issue 2, p. 1447-1452). https://doi.org/10.1128/jvi.73.2.1447-1452.1999
(). Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an ultramicroelectrode. In Carcinogenesis (Vol. 18, Issue 3, p. 569-574). https://doi.org/10.1093/carcin/18.3.569
(). Phenylarsine oxide inhibits ex vivo HIV-1 expression. In Biomedicine and Pharmacotherapy (Vol. 51, Issue 10, p. 430-438). https://doi.org/10.1016/S0753-3322(97)82321-9