Image

Téléphone
05 56 84 65 97
Groupe de recherche
NanoSystèmes Analytiques
Statut
Permanent
Poste
Enseignant-chercheur
Batiment
ENSMAC
Etage
1°
Publications
Wireless electroorganic synthesis. In Current Opinion in Electrochemistry (Vol. 49, p. 101612). https://doi.org/10.1016/j.coelec.2024.101612
().
Chemically-Driven Autonomous Janus Electromagnets as Magnetotactic Swimmers. In Angewandte Chemie - International Edition (Vol. 63, Issue 37, p. e202408198). https://doi.org/10.1002/anie.202408198
().
Synthesis of Multi-Functional Graphene Monolayers via Bipolar Electrochemistry. In ChemPhysChem (Vol. 25, Issue 16, p. e202400257). https://doi.org/10.1002/cphc.202400257
().
Fine-Tuning the Optoelectronic and Redox Properties of an Electropolymerized Thiophene Derivative for Highly Selective OECT-Based Zinc Detection. In Advanced Materials Interfaces (Vol. 11, Issue 21, p. 2400127). https://doi.org/10.1002/admi.202400127
().
Design of Janus Particles by Bipolar Electrochemistry at the Water-Organic Interface. In Chemistry of Materials (Vol. 36, Issue 14, p. 7079-7088). https://doi.org/10.1021/acs.chemmater.4c01512
().
Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. In ChemPhysChem (Vol. 25, Issue 12, p. e202400133). https://doi.org/10.1002/cphc.202400133
().
Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity. In Chemistry - A European Journal (Vol. 30, Issue 29, p. e202400078). https://doi.org/10.1002/chem.202400078
().
Complex electrochemiluminescence patterns shaped by hydrodynamics at a rotating bipolar electrode. In Chemical Science (Vol. 15, Issue 23, p. 8723-8730). https://doi.org/10.1039/d4sc02528h
().
Enantioselective recognition, synthesis, and separation of pharmaceutical compounds at chiral metallic surfaces. In ChemMedChem (Vol. 19, Issue 7, p. e202300557). https://doi.org/10.1002/cmdc.202300557
().
Wireless Magnetoelectrochemical Induction of Rotational Motion. In Advanced Science (Vol. 11, Issue 9, p. 2306635). https://doi.org/10.1002/advs.202306635
().
Light-emitting bipolar electrochemistry: a straightforward way to illustrate thermodynamic aspects to students. In Journal of Solid State Electrochemistry (Vol. 28, Issue 3-4, p. 1225-1231). https://doi.org/10.1007/s10008-023-05690-9
().
Bulk Electrosynthesis of Patchy Particles with Highly Controlled Asymmetric Features. In Advanced Materials (Vol. 36, Issue 6, p. 2307539). https://doi.org/10.1002/adma.202307539
().
Miniaturized enantioselective tubular devices for the electromechanical wireless separation of chiral analytes. In Chem (Vol. 10, Issue 2, p. 660-674). https://doi.org/10.1016/j.chempr.2023.11.001
().
Cable Bacteria Skeletons as Catalytically Active Electrodes. In Angewandte Chemie - International Edition (Vol. 63, Issue 6, p. e202312647). https://doi.org/10.1002/anie.202312647
().
Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry. In ChemElectroChem. https://doi.org/10.1002/celc.202400522
().
Magnetohydrodynamic Enhancement of Biofuel Cell Performance. In Chemistry - A European Journal. https://doi.org/10.1002/chem.202403329
().
Contactless manufacturing of TERS-active AFM tips by bipolar electrodeposition. In Nanoscale. https://doi.org/10.1039/d4nr03068k
().
Bipolar electrochemiluminescence at the water/organic interface. In Chemical Science. https://doi.org/10.1039/d4sc06103a
().
Tuning the Electrochemical Properties of Poly-thiophenes with a 2,5-Dithienil-N-subtituted-pyrrole Bearing an Aniline Moiety for Electrochromic Devices. In ChemElectroChem (Vol. 10, Issue 24, p. e202300346). https://doi.org/10.1002/celc.202300346
().
Unusual long-term stability of enzymatic bioelectrocatalysis in organic solvents. In Journal of Catalysis (Vol. 428, p. 115163). https://doi.org/10.1016/j.jcat.2023.115163
().
Nanostructured gold-coated AFM tips generated by potentiostatic electrodeposition for tip-enhanced Raman spectroscopy. In Chemical Physics Letters (Vol. 832, p. 140893). https://doi.org/10.1016/j.cplett.2023.140893
().
Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers. In Nature Communications (Vol. 14, Issue 1, p. 6390). https://doi.org/10.1038/s41467-023-42153-1
().
Macroporous Polymer Cantilever Resonators for Chemical Sensing Applications. In Advanced Materials Technologies (Vol. 8, Issue 22, p. 2300771). https://doi.org/10.1002/admt.202300771
().
Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. In Chemistry - A European Journal (Vol. 29, Issue 61, p. e202302054). https://doi.org/10.1002/chem.202302054
().
Electrofuels: general discussion. In Faraday Discussions (Vol. 247, p. 246-253). https://doi.org/10.1039/d3fd90041j
().
Understanding and controlling organic electrosynthesis mechanism: general discussion. In Faraday Discussions (Vol. 247, p. 206-215). https://doi.org/10.1039/d3fd90038j
().
Interdisciplinary electrosynthesis: general discussion. In Faraday Discussions (Vol. 247, p. 168-178). https://doi.org/10.1039/d3fd90037a
().
Selective organic electrosynthesis: general discussion. In Faraday Discussions (Vol. 247, p. 70-78). https://doi.org/10.1039/d3fd90036c
().
Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. In Nano Letters (Vol. 23, Issue 17, p. 8180-8185). https://doi.org/10.1021/acs.nanolett.3c02314
().
Endogenous and exogenous wireless multimodal light-emitting chemical devices. In Chemical Science (Vol. 14, Issue 39, p. 10664-10670). https://doi.org/10.1039/d3sc03678b
().
Self-Sustained Rotation of Lorentz Force-Driven Janus Systems. In Journal of Physical Chemistry C (Vol. 127, Issue 30, p. 14704-14710). https://doi.org/10.1021/acs.jpcc.3c01597
().
Resistance measurements for the wireless evaluation of electrocatalytic activity. In Electrochimica Acta (Vol. 458, p. 142506). https://doi.org/10.1016/j.electacta.2023.142506
().
Enantioselective resolution of two model amino acids using inherently chiral oligomer films with uncorrelated molecular structures. In Chemical Communications (Vol. 59, Issue 64, p. 9758-9761). https://doi.org/10.1039/d3cc02258g
().
Metal-organic framework functionalized bipolar electrodes for bulk electroenzymatic synthesis. In Journal of Catalysis (Vol. 421, p. 95-100). https://doi.org/10.1016/j.jcat.2023.03.001
().
Controlled Patterning of Complex Resistance Gradients in Conducting Polymers with Bipolar Electrochemistry. In Advanced Materials Interfaces (Vol. 10, Issue 12, p. 2202367). https://doi.org/10.1002/admi.202202367
().
Unconventional applications of the magnetohydrodynamic effect in electrochemical systems. In Current Opinion in Electrochemistry (Vol. 38, p. 101220). https://doi.org/10.1016/j.coelec.2023.101220
().
Magnetic field-enhanced redox chemistry on-the-fly for enantioselective synthesis. In Faraday Discussions (Vol. 247, p. 34-44). https://doi.org/10.1039/d3fd00041a
().
Wireless Electronic Light Emission: An Introduction to Bipolar Electrochemistry. In Journal of Chemical Education (Vol. 100, Issue 2, p. 767-773). https://doi.org/10.1021/acs.jchemed.2c00573
().
Bottom-Up Designed Porous Coaxial Twin-Electrodes for Efficient Redox Cycling. In Advanced Functional Materials (Vol. 33, Issue 7, p. 2210638). https://doi.org/10.1002/adfm.202210638
().
Wireless electromechanical enantio-responsive valves. In Chirality (Vol. 35, Issue 2, p. 110-117). https://doi.org/10.1002/chir.23521
().
Bipolar electrochemical rotors for the direct transduction of molecular chiral information. In Biosensors and Bioelectronics (Vol. 218, p. 114740). https://doi.org/10.1016/j.bios.2022.114740
().
Wireless electrochemical light emission in ultrathin 2D nanoconfinements. In Chemical Science (Vol. 13, Issue 48, p. 14277-14284). https://doi.org/10.1039/d2sc04670a
().
Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl]+-Functionalized Metal-Organic Framework Films. In ACS Applied Materials and Interfaces (Vol. 14, Issue 41, p. 46673-46681). https://doi.org/10.1021/acsami.2c13631
().
Wireless Imaging of Transient Redox Activity Based on Bipolar Light-Emitting Electrode Arrays. In Analytical Chemistry (Vol. 94, Issue 41, p. 14317-14321). https://doi.org/10.1021/acs.analchem.2c02872
().
Autonomous Chiral Microswimmers with Self-mixing Capabilities for Highly Efficient Enantioselective Synthesis. In Angewandte Chemie - International Edition (Vol. 61, Issue 40, p. e202209098). https://doi.org/10.1002/anie.202209098
().
Recent advances in electrochemical transduction of chiral information. In Current Opinion in Colloid and Interface Science (Vol. 61, p. 101626). https://doi.org/10.1016/j.cocis.2022.101626
().
Electrochemiluminescent enantioselective detection with chiral-imprinted mesoporous metal surfaces. In Chemical Communications (Vol. 58, Issue 76, p. 10707-10710). https://doi.org/10.1039/d2cc02562k
().
Spatially Controlled CO2 Conversion Kinetics in Natural Leaves for Motion Generation. In Angewandte Chemie - International Edition (Vol. 61, Issue 34, p. e202205298). https://doi.org/10.1002/anie.202205298
().
Wireless light-emitting device for the determination of chirality in real samples. In Electrochimica Acta (Vol. 421, p. 140494). https://doi.org/10.1016/j.electacta.2022.140494
().
Site-Selective Bipolar Electrodeposition of Gold Clusters on Graphene Oxide Microsheets at a 3D Air|Liquid Interface. In Advanced Materials Interfaces (Vol. 9, Issue 21, p. 2200304). https://doi.org/10.1002/admi.202200304
().
Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar Electrodes. In Journal of Physical Chemistry Letters (Vol. 13, Issue 24, p. 5538-5544). https://doi.org/10.1021/acs.jpclett.2c01512
().
Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization. In ACS Applied Materials and Interfaces (Vol. 14, Issue 23, p. 26350-26358). https://doi.org/10.1021/acsami.2c02993
().
Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers. In Carbon (Vol. 191, p. 439-447). https://doi.org/10.1016/j.carbon.2022.02.010
().
Recent progress in enzyme-driven micro/nanoswimmers: From fundamentals to potential applications. In Current Opinion in Electrochemistry (Vol. 32, p. 100887). https://doi.org/10.1016/j.coelec.2021.100887
().
Bifunctional Pt/Au Janus electrocatalysts for simultaneous oxidation/reduction of furfural with bipolar electrochemistry. In Chemical Communications (Vol. 58, Issue 27, p. 4312-4315). https://doi.org/10.1039/d1cc06759a
().
Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. In Chemical Science (Vol. 13, Issue 8, p. 2339-2346). https://doi.org/10.1039/d2sc00056c
().
Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. In Chemical Engineering Science (Vol. 248, p. 117157). https://doi.org/10.1016/j.ces.2021.117157
().
Bulk Electrocatalytic NADH Cofactor Regeneration with Bipolar Electrochemistry. In Angewandte Chemie - International Edition (Vol. 61, Issue 3, p. e202111804). https://doi.org/10.1002/anie.202111804
().
Recent Advances in Bipolar Electrochemistry with Conducting Polymers. In ChemElectroChem (Vol. 9, Issue 1, p. e202101234). https://doi.org/10.1002/celc.202101234
().
Bipolar Electrochemical Measurement of Enantiomeric Excess with Inherently Chiral Polymer Actuators. In ACS Measurement Science Au (Vol. 1, Issue 3, p. 110-116). https://doi.org/10.1021/acsmeasuresciau.1c00011
().
Hybrid light-emitting devices for the straightforward readout of chiral information. In Chirality (Vol. 33, Issue 12, p. 875-882). https://doi.org/10.1002/chir.23370
().
Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. In Nature Communications (Vol. 12, Issue 1, p. 1314). https://doi.org/10.1038/s41467-021-21603-8
().
Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. In Nature Chemistry (Vol. 13, Issue 12, p. 1241-1247). https://doi.org/10.1038/s41557-021-00798-9
().
Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Pt−Ir Films Supported on Ni Foam. In Chemistry - An Asian Journal (Vol. 16, Issue 21, p. 3345-3353). https://doi.org/10.1002/asia.202100966
().
Combinatorial growth of multinary nanostructured thin functional films. In Materials Today (Vol. 50, p. 89-99). https://doi.org/10.1016/j.mattod.2021.06.001
().
In Situ Spectroelectrochemical-Conductance Measurements as an Efficient Tool for the Evaluation of Charge Trapping in Conducting Polymers. In Journal of Physical Chemistry Letters (Vol. 12, Issue 42, p. 10422-10428). https://doi.org/10.1021/acs.jpclett.1c03108
().
Lorentz Force-Driven Autonomous Janus Swimmers. In Journal of the American Chemical Society (Vol. 143, Issue 32, p. 12708-12714). https://doi.org/10.1021/jacs.1c05589
().
Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. In ChemPhysChem (Vol. 22, Issue 13, p. 1321-1325). https://doi.org/10.1002/cphc.202100236
().
Wireless Dual Stimuli Actuation of Dye Sensitized Conducting Polymer Hybrids. In Advanced Functional Materials (Vol. 31, Issue 22, p. 2101171). https://doi.org/10.1002/adfm.202101171
().
Wireless in Vivo Biofuel Cell Monitoring. In IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology (Vol. 5, Issue 1, p. 25-34). https://doi.org/10.1109/JERM.2020.2998325
().
Designing tubular conducting polymer actuators for wireless electropumping. In Chemical Science (Vol. 12, Issue 6, p. 2071-2077). https://doi.org/10.1039/d0sc05885h
().
Supramolecular Ladder Assemblies as a Model for Probing Electronic Interactions between Multiple Stacked π-Conjugated Systems. In ChemPhysChem (Vol. 22, Issue 2, p. 178-183). https://doi.org/10.1002/cphc.202000857
().
Bipolar (Bio)electroanalysis. In Annual Review of Analytical Chemistry (Vol. 14, p. 65-86). https://doi.org/10.1146/annurev-anchem-090820-093307
().
Large Scale Chirality Transduction with Functional Molecular Materials. In Chemistry of Materials (Vol. 32, Issue 24, p. 10663-10669). https://doi.org/10.1021/acs.chemmater.0c03835
().
Electrochemistry-Based Light-Emitting Mobile Systems. In ChemElectroChem (Vol. 7, Issue 24, p. 4853-4862). https://doi.org/10.1002/celc.202001104
().
Highly defective carbon nanotubes for sensitive, low-cost and environmentally friendly electrochemical H2 O2 sensors: Insight into carbon supports. In Carbon (Vol. 170, p. 154-164). https://doi.org/10.1016/j.carbon.2020.07.081
().
Light and electric field induced unusual large-scale charge separation in hybrid semiconductor objects. In Physical Chemistry Chemical Physics (Vol. 22, Issue 39, p. 22180-22184). https://doi.org/10.1039/d0cp03262j
().
Wireless enhanced electrochemiluminescence at a bipolar microelectrode in a solid-state micropore. In Journal of the Electrochemical Society (Vol. 167, Issue 13, p. 137509). https://doi.org/10.1149/1945-7111/abbbc1
().
To be, or not to be…Electrochemist?. In Journal of Solid State Electrochemistry (Vol. 24, Issue 9, p. 2113-2114). https://doi.org/10.1007/s10008-020-04650-x
().
Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. In ACS Applied Materials and Interfaces (Vol. 12, Issue 32, p. 36548-36557). https://doi.org/10.1021/acsami.0c09816
().
Digitization and image-based structure-properties relationship evaluation of a porous gold micro-electrode. In Materials and Design (Vol. 193, p. 108812). https://doi.org/10.1016/j.matdes.2020.108812
().
Absolute Chiral Recognition with Hybrid Wireless Electrochemical Actuators. In Analytical Chemistry (Vol. 92, Issue 14, p. 10042-10047). https://doi.org/10.1021/acs.analchem.0c01817
().
Sodium-Ion Selectivity Study of a Crown-Ether-Functionalized PEDOT Analog. In ChemElectroChem (Vol. 7, Issue 13, p. 2826-2830). https://doi.org/10.1002/celc.202000693
().
Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. In Chemical Science (Vol. 11, Issue 28, p. 7438-7443). https://doi.org/10.1039/d0sc02431g
().
Design of Potassium-Selective Mixed Ion/Electron Conducting Polymers. In Macromolecular Rapid Communications (Vol. 41, Issue 12, p. 2000134). https://doi.org/10.1002/marc.202000134
().
Enzymatic Glucose-Oxygen Biofuel Cells for Highly Efficient Interfacial Corrosion Protection. In ACS Applied Energy Materials (Vol. 3, Issue 5, p. 4441-4448). https://doi.org/10.1021/acsaem.0c00140
().
Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. In ACS Applied Materials and Interfaces (Vol. 12, Issue 20, p. 23378-23387). https://doi.org/10.1021/acsami.0c01017
().
Chemo- and Magnetotaxis of Self-Propelled Light-Emitting Chemo-electronic Swimmers. In Angewandte Chemie - International Edition (Vol. 59, Issue 19, p. 7508-7513). https://doi.org/10.1002/anie.201915705
().
Oscillatory Light-Emitting Biopolymer Based Janus Microswimmers. In Advanced Materials Interfaces (Vol. 7, Issue 10, p. 1902094). https://doi.org/10.1002/admi.201902094
().
Remote Actuation of a Light-Emitting Device Based on Magnetic Stirring and Wireless Electrochemistry. In ChemPhysChem (Vol. 21, Issue 7, p. 600-604). https://doi.org/10.1002/cphc.202000019
().
Encoding Chiral Molecular Information in Metal Structures. In Chemistry - A European Journal (Vol. 26, Issue 14, p. 2993-3003). https://doi.org/10.1002/chem.201904835
().
Hexagonally Packed Macroporous Molecularly Imprinted Polymers for Chemosensing of Follicle-Stimulating Hormone Protein. In ACS Sensors (Vol. 5, Issue 1, p. 118-126). https://doi.org/10.1021/acssensors.9b01878
().
Physical Chemistry, a Discipline in Its Golden Age. In ChemPhysChem (Vol. 21, Issue 1, p. 7-8). https://doi.org/10.1002/cphc.201900932
().
Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media. In ChemCatChem (Vol. 11, Issue 24, p. 5834). https://doi.org/10.1002/cctc.201901973
().
Upscaled model for diffusion and serial reduction pathways in porous electrodes. In Journal of Electroanalytical Chemistry (Vol. 855, p. 113325). https://doi.org/10.1016/j.jelechem.2019.113325
().
Synthesis, Characterization, and Electrochemical Applications of Chiral Imprinted Mesoporous Ni Surfaces. In Journal of the American Chemical Society (Vol. 141, Issue 47, p. 18870-18876). https://doi.org/10.1021/jacs.9b10507
().
Rational Design of Enzyme-Modified Electrodes for Optimized Bioelectrocatalytic Activity. In ChemElectroChem (Vol. 6, Issue 19, p. 4980-4984). https://doi.org/10.1002/celc.201901022
().
Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. In Journal of Physical Chemistry Letters (Vol. 10, Issue 18, p. 5318-5324). https://doi.org/10.1021/acs.jpclett.9b02188
().
Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. In Current Opinion in Electrochemistry (Vol. 16, p. 28-34). https://doi.org/10.1016/j.coelec.2019.04.004
().
Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. In Analytical Chemistry (Vol. 91, Issue 14, p. 8900-8907). https://doi.org/10.1021/acs.analchem.9b00559
().
Wireless Coupling of Conducting Polymer Actuators with Light Emission. In ChemPhysChem (Vol. 20, Issue 7, p. 941-945). https://doi.org/10.1002/cphc.201900116
().
Potential-Induced Fine-Tuning of the Enantioaffinity of Chiral Metal Phases. In Angewandte Chemie - International Edition (Vol. 58, Issue 11, p. 3471-3475). https://doi.org/10.1002/anie.201812057
().
Wireless Addressing of Freestanding MoSe 2 Macro- and Microparticles by Bipolar Electrochemistry. In Journal of Physical Chemistry C (Vol. 123, Issue 9, p. 5647-5652). https://doi.org/10.1021/acs.jpcc.8b09702
().
Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. In ACS Applied Materials and Interfaces (Vol. 11, Issue 9, p. 9265-9276). https://doi.org/10.1021/acsami.8b17951
().
Optimal Thickness of a Porous Micro-Electrode Operating a Single Redox Reaction. In ChemElectroChem (Vol. 6, Issue 1, p. 173-180). https://doi.org/10.1002/celc.201800972
().
Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. In Chemical Communications (Vol. 55, Issue 73, p. 10956-10959). https://doi.org/10.1039/c9cc05854k
().
Biochemical sensing based on bipolar electrochemistry. In Bioelectrochemistry: Design and Applications of Biomaterials (p. 101-120). https://doi.org/10.1515/9783110570526-006
().
Uphill production of dihydrogen by enzymatic oxidation of glucose without an external energy source. In Nature Communications (Vol. 9, Issue 1, p. 3229). https://doi.org/10.1038/s41467-018-05704-5
().
Wireless Electromechanical Readout of Chemical Information. In Journal of the American Chemical Society (Vol. 140, Issue 45, p. 15501-15506). https://doi.org/10.1021/jacs.8b10072
().
Highly Ordered Macroporous Poly-3,4- ortho-xylendioxythiophene Electrodes as a Sensitive Analytical Tool for Heavy Metal Quantification. In Analytical Chemistry (Vol. 90, Issue 20, p. 11770-11774). https://doi.org/10.1021/acs.analchem.8b03779
().
Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation. In Small (Vol. 14, Issue 34, p. 1801599). https://doi.org/10.1002/smll.201801599
().
High-q implantable resonator for wireless power delivery. In IMBioc 2018 - 2018 IEEE/MTT-S International Microwave Biomedical Conference (p. 46-48). https://doi.org/10.1109/IMBIOC.2018.8428887
().
Wireless Power Transfer Link for RFID Telemetry System Applied to Laboratory Rodent Monitoring. In 2018 IEEE Wireless Power Transfer Conference, WPTC 2018 (p. 8639431). https://doi.org/10.1109/WPT.2018.8639431
().
Bipolar Conducting Polymer Crawlers Based on Triple Symmetry Breaking. In Advanced Functional Materials (Vol. 28, Issue 25, p. 1705825). https://doi.org/10.1002/adfm.201705825
().
Current hot-spots and some more exotic topics. In Current Opinion in Electrochemistry (Vol. 7, p. A1-A4). https://doi.org/10.1016/j.coelec.2018.03.002
().
Pulsed electroconversion for highly selective enantiomer synthesis. In Nature Communications (Vol. 8, Issue 1, p. 2087). https://doi.org/10.1038/s41467-017-02190-z
().
Indirect bipolar electrodeposition of polymers for the controlled design of zinc microswimmers. In Applied Materials Today (Vol. 9, p. 259-265). https://doi.org/10.1016/j.apmt.2017.08.005
().
Wireless Electrochemical Actuation of Conducting Polymers. In Angewandte Chemie - International Edition (Vol. 56, Issue 45, p. 14183-14186). https://doi.org/10.1002/anie.201709038
().
Capillary-assisted bipolar electrochemistry: A focused mini review. In Electrophoresis (Vol. 38, Issue 21, p. 2687-2694). https://doi.org/10.1002/elps.201600568
().
Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. In ChemPhysChem (Vol. 18, Issue 19, p. 2557). https://doi.org/10.1002/cphc.201701002
().
Modulation of Wetting Gradients by Tuning the Interplay between Surface Structuration and Anisotropic Molecular Layers with Bipolar Electrochemistry. In ChemPhysChem (Vol. 18, Issue 19, p. 2637-2642). https://doi.org/10.1002/cphc.201700398
().
Wireless light-emitting electrochemical rotors. In Journal of Physical Chemistry Letters (Vol. 8, Issue 19, p. 4930-4934). https://doi.org/10.1021/acs.jpclett.7b01899
().
Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation. In Angewandte Chemie - International Edition (Vol. 56, Issue 38, p. 11431-11435). https://doi.org/10.1002/anie.201704393
().
Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. In Biosensors and Bioelectronics (Vol. 94, p. 155-161). https://doi.org/10.1016/j.bios.2017.02.046
().
Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities. In Nano Letters (Vol. 17, Issue 8, p. 4840-4845). https://doi.org/10.1021/acs.nanolett.7b01676
().
Bipolar Electrochemistry with Organic Single Crystals for Wireless Synthesis of Metal-Organic Janus Objects and Asymmetric Photovoltage Generation. In Journal of Physical Chemistry C (Vol. 121, Issue 23, p. 12921-12927). https://doi.org/10.1021/acs.jpcc.7b02678
().
On-chip enzymatic microbiofuel cell-powered integrated circuits. In Lab on a Chip (Vol. 17, Issue 10, p. 1761-1768). https://doi.org/10.1039/c7lc00178a
().
Spatially-resolved multicolor bipolar electrochemiluminescence. In Electrochemistry Communications (Vol. 77, p. 10-13). https://doi.org/10.1016/j.elecom.2017.02.006
().
Low-Molecular-Weight Hydrogels as New Supramolecular Materials for Bioelectrochemical Interfaces. In ACS applied materials & interfaces (Vol. 9, Issue 1, p. 1093-1098). https://doi.org/10.1021/acsami.6b12890
().
Highly ordered macroporous electrodes. In Springer Handbooks (p. 143-206). https://doi.org/10.1007/978-3-662-46657-5_6
().
Multi-scale modeling of diffusion and electrochemical reactions in porous micro-electrodes. In Chemical Engineering Science (Vol. 173, p. 153-167). https://doi.org/10.1016/j.ces.2017.07.039
().
Plasmonic response and SERS modulation in electrochemical applied potentials. In Faraday Discussions (Vol. 205, p. 537-545). https://doi.org/10.1039/c7fd00130d
().
Surface enhancement of a molecularly imprinted polymer film using sacrificial silica beads for increasing l-arabitol chemosensor sensitivity and detectability. In Journal of Materials Chemistry B (Vol. 5, Issue 31, p. 6292-6299). https://doi.org/10.1039/c7tb01407d
().
Recent advances in bipolar electrochemistry. In Electroanalytical Chemistry: A Series of Advances, Volume 27 (p. 27-117). https://doi.org/10.1201/9781315270302
().
Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. In Langmuir (Vol. 32, Issue 49, p. 12995-13002). https://doi.org/10.1021/acs.langmuir.6b03040
().
Miniaturized Electrochemical Device from Assembled Cylindrical Macroporous Gold Electrodes. In ChemElectroChem (Vol. 3, Issue 12, p. 2031-2035). https://doi.org/10.1002/celc.201600466
().
Porous Transparent Conductors: Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics (Adv. Funct. Mater. 37/2016). In Advanced Functional Materials (Vol. 26, Issue 37, p. 6673). https://doi.org/10.1002/adfm.201670239
().
Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics. In Advanced Functional Materials (Vol. 26, Issue 37, p. 6682-6692). https://doi.org/10.1002/adfm.201602148
().
Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. In Analytical and Bioanalytical Chemistry (Vol. 408, Issue 25, p. 7003-7011). https://doi.org/10.1007/s00216-016-9606-9
().
Asymmetric synthesis using chiral-encoded metal. In Nature Communications (Vol. 7, p. 12678). https://doi.org/10.1038/ncomms12678
().
Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. In Analyst (Vol. 141, Issue 14, p. 4299-4304). https://doi.org/10.1039/c6an00652c
().
Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence. In Analytical Chemistry (Vol. 88, Issue 12, p. 6585-6592). https://doi.org/10.1021/acs.analchem.6b01434
().
Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with D-arabitol. In Biosensors and Bioelectronics (Vol. 79, p. 627-635). https://doi.org/10.1016/j.bios.2015.12.088
().
A Compelling Case for Bipolar Electrochemistry. In ChemElectroChem (Vol. 3, Issue 3, p. 351-352). https://doi.org/10.1002/celc.201500569
().
Dual-Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry. In ChemElectroChem (Vol. 3, Issue 3, p. 404-409). https://doi.org/10.1002/celc.201500402
().
Bipolar Electrografting on the Inner Wall of Carbon Nanotubes. In ChemElectroChem (Vol. 3, Issue 3, p. 410-414). https://doi.org/10.1002/celc.201500379
().
Selective Functionalization of Graphene Peripheries by using Bipolar Electrochemistry. In ChemElectroChem (Vol. 3, Issue 3, p. 372-377). https://doi.org/10.1002/celc.201500461
().
Single-Step Screening of the Potential Dependence of Metal Layer Morphologies along Bipolar Electrodes. In ChemElectroChem (Vol. 3, Issue 3, p. 387-391). https://doi.org/10.1002/celc.201500313
().
Electric fields for generating unconventional motion of small objects. In Current Opinion in Colloid and Interface Science (Vol. 21, p. 57-64). https://doi.org/10.1016/j.cocis.2015.12.002
().
Elaboration of metal organic framework hybrid materials with hierarchical porosity by electrochemical deposition-dissolution. In CrystEngComm (Vol. 18, Issue 27, p. 5095-5100). https://doi.org/10.1039/c6ce00658b
().
Applications of electrogenerated chemiluminescence in analytical chemistry. In Luminescence in Electrochemistry: Applications in Analytical Chemistry, Physics and Biology (p. 257-291). https://doi.org/10.1007/978-3-319-49137-0_8
().
One-step preparation of bifunctionalized surfaces by bipolar electrografting. In RSC Advances (Vol. 6, Issue 5, p. 3882-3887). https://doi.org/10.1039/c5ra20156j
().
Generation of metal composition gradients by means of bipolar electrodeposition. In Electrochimica Acta (Vol. 179, p. 276-281). https://doi.org/10.1016/j.electacta.2015.03.102
().
Enantioselective Recognition of DOPA by Mesoporous Platinum Imprinted with Mandelic Acid. In Electroanalysis (Vol. 27, Issue 9, p. 2209-2213). https://doi.org/10.1002/elan.201500145
().
Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. In Lab on a Chip (Vol. 15, Issue 19, p. 3880-3890). https://doi.org/10.1039/c5lc00616c
().
Bottom-up Generation of Miniaturized Coaxial Double Electrodes with Tunable Porosity. In Advanced Materials Interfaces (Vol. 2, Issue 12, p. 1500192). https://doi.org/10.1002/admi.201500192
().
3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. In Chemical Science (Vol. 6, Issue 8, p. 4433-4437). https://doi.org/10.1039/c5sc01530h
().
Synthesis of conducting asymmetric hydrogel particles showing autonomous motion. In Soft Matter (Vol. 11, Issue 20, p. 3958-3962). https://doi.org/10.1039/c5sm00273g
().
Linking glucose oxidation to luminol-based electrochemiluminescence using bipolar electrochemistry. In Electrochemistry Communications (Vol. 50, p. 77-80). https://doi.org/10.1016/j.elecom.2014.11.015
().
Asymmetric Modification of TiO2 Nanofibers with Gold by Electric-Field-Assisted Photochemistry. In ChemElectroChem (Vol. 1, Issue 12, p. 2048-2051). https://doi.org/10.1002/celc.201402161
().
Wireless electrosampling of heavy metals for stripping analysis with bismuth-based janus particles. In Analytical Chemistry (Vol. 86, Issue 21, p. 10515-10519). https://doi.org/10.1021/ac5033897
().
Wireless powering of e-swimmers. In Scientific Reports (Vol. 4, p. 6705). https://doi.org/10.1038/srep06705
().
Physico-chemical milling for controlled size reduction of metal beads. In Physical Chemistry Chemical Physics (Vol. 16, Issue 39, p. 21234-21236). https://doi.org/10.1039/c4cp03279a
().
Electrochemical Motors. In Discovering the Future of Molecular Sciences (Vol. 9783527335442, p. 349-378). https://doi.org/10.1002/9783527673223.ch14
().
Electrochemiluminescent swimmers for dynamic enzymatic sensing. In Chemical Communications (Vol. 50, Issue 71, p. 10202-10205). https://doi.org/10.1039/c4cc04105d
().
Straight-forward synthesis of ringed particles. In Chemical Science (Vol. 5, Issue 5, p. 1961-1966). https://doi.org/10.1039/c3sc53329h
().
Imaging redox activity at bipolar electrodes by indirect fluorescence modulation. In Analytical Chemistry (Vol. 86, Issue 8, p. 3708-3711). https://doi.org/10.1021/ac500623v
().
Site-selective synthesis of Janus-type metal-organic framework composites. In Angewandte Chemie - International Edition (Vol. 53, Issue 15, p. 4001-4005). https://doi.org/10.1002/anie.201400581
().
Electropolymerization of polypyrrole by bipolar electrochemistry in an ionic liquid. In Langmuir (Vol. 30, Issue 11, p. 2973-2976). https://doi.org/10.1021/la404916t
().
Enantioselective recognition at mesoporous chiral metal surfaces. In Nature Communications (Vol. 5, p. 3325). https://doi.org/10.1038/ncomms4325
().
Asymmetrical modification of carbon microfibers by bipolar electrochemistry in acetonitrile. In Electrochimica Acta (Vol. 116, p. 421-428). https://doi.org/10.1016/j.electacta.2013.11.066
().
Lighting up redox propulsion with luminol electrogenerated chemiluminescence. In ChemElectroChem (Vol. 1, Issue 1, p. CELC201300042). https://doi.org/10.1002/celc.201300042
().
Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled subnanometer junctions. In Nano Letters (Vol. 13, Issue 12, p. 6016-6022). https://doi.org/10.1021/nl403224q
().
Bipolar electrochemistry: from materials science to motion and beyond. In Accounts of Chemical Research (Vol. 46, Issue 11, p. 2513-2523). https://doi.org/10.1021/ar400039k
().
Chemiluminescence from asymmetric inorganic surface layers generated by bipolar electrochemistry. In ChemPhysChem (Vol. 14, Issue 10, p. 2089-2093). https://doi.org/10.1002/cphc.201300068
().
Enhanced hydrogen peroxide sensing based on Prussian Blue modified macroporous microelectrodes. In Electrochemistry Communications (Vol. 29, p. 78-80). https://doi.org/10.1016/j.elecom.2013.01.004
().
Design of a wireless electrochemical valve. In Nanoscale (Vol. 5, Issue 4, p. 1305-1309). https://doi.org/10.1039/c2nr32875e
().
Introducing a well-ordered volume porosity in 3-dimensional gold microcantilevers. In Applied Physics Letters (Vol. 102, Issue 5, p. 053501). https://doi.org/10.1063/1.4790396
().
Wireless electrografting of molecular layers for janus particle synthesis. In Chemistry - A European Journal (Vol. 19, Issue 5, p. 1577-1580). https://doi.org/10.1002/chem.201204198
().
Interest of the Sol-Gel Approach for Multiscale Tailoring of Porous Bioelectrode Surfaces. In Electroanalysis (Vol. 25, Issue 3, p. 621-629). https://doi.org/10.1002/elan.201200319
().
Bipolar electrochemistry in the nanosciences. In SPR Electrochemistry (Vol. 11, p. 71-103). https://doi.org/10.1039/9781849734820-00071
().
Guest Editorial: Bioelectrochemistry and Electroanalytical Chemistry in France. In Electroanalysis (Vol. 25, Issue 3, p. 585). https://doi.org/10.1002/elan.201380133
().
Capillary electrophoresis as a production tool for asymmetric microhybrids. In Electrophoresis (Vol. 34, Issue 14, p. 1985-1990). https://doi.org/10.1002/elps.201300064
().
Hierarchical macro-mesoporous pt deposits on gold microwires for efficient methanol oxidation. In Electroanalysis (Vol. 25, Issue 4, p. 888-894). https://doi.org/10.1002/elan.201200490
().
Indirect bipolar electrodeposition. In Journal of the American Chemical Society (Vol. 134, Issue 49, p. 20033-20036). https://doi.org/10.1021/ja310400f
().
Light-emitting electrochemical "swimmers". In Angewandte Chemie - International Edition (Vol. 51, Issue 45, p. 11284-11288). https://doi.org/10.1002/anie.201206227
().
Controlled orientation of asymmetric copper deposits on carbon microobjects by bipolar electrochemistry. In Journal of Physical Chemistry C (Vol. 116, Issue 41, p. 22021-22027). https://doi.org/10.1021/jp3064118
().
True bulk synthesis of Janus objects by bipolar electrochemistry. In Advanced Materials (Vol. 24, Issue 37, p. 5111-5116). https://doi.org/10.1002/adma.201201623
().
Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. In Journal of Neurophysiology (Vol. 108, Issue 6, p. 1793-1803). https://doi.org/10.1152/jn.00711.2011
().
Direct visualization of symmetry breaking during janus nanoparticle formation. In Small (Vol. 8, Issue 17, p. 2698-2703). https://doi.org/10.1002/smll.201200546
().
Bulk synthesis of Janus objects and asymmetric patchy particles. In Journal of Materials Chemistry (Vol. 22, Issue 31, p. 15457-15474). https://doi.org/10.1039/c2jm31740k
().
Bipolar electrochemistry for cargo-lifting in fluid channels. In Lab on a Chip (Vol. 12, Issue 11, p. 1967-1971). https://doi.org/10.1039/c2lc21301j
().
Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation. In Journal of Physiology Paris (Vol. 106, Issue 3-4, p. 137-145). https://doi.org/10.1016/j.jphysparis.2011.10.001
().
Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures. In Advanced Functional Materials (Vol. 22, Issue 3, p. 538-545). https://doi.org/10.1002/adfm.201101918
().
Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures. In Langmuir (Vol. 28, Issue 5, p. 2323-2326). https://doi.org/10.1021/la204679u
().
Electric field-induced chemical locomotion of conducting objects. In Nature Communications (Vol. 2, Issue 1, p. 535). https://doi.org/10.1038/ncomms1550
().
Straightforward single-step generation of microswimmers by bipolar electrochemistry. In Electrochimica Acta (Vol. 56, Issue 28, p. 10562-10566). https://doi.org/10.1016/j.electacta.2011.01.048
().
Electrochemically assisted deposition of sol-gel bio-composite with co-immobilized dehydrogenase and diaphorase. In Electrochimica Acta (Vol. 56, Issue 25, p. 9032-9040). https://doi.org/10.1016/j.electacta.2011.05.130
().
Multiscale-tailored bioelectrode surfaces for optimized catalytic conversion efficiency. In Langmuir (Vol. 27, Issue 20, p. 12737-12744). https://doi.org/10.1021/la201930m
().
Macroporous microelectrode arrays for measurements with reduced noise. In Journal of Electroanalytical Chemistry (Vol. 656, Issue 1-2, p. 91-95). https://doi.org/10.1016/j.jelechem.2011.01.004
().
Shaping and exploring the micro- and nanoworld using bipolar electrochemistry. In Analytical and Bioanalytical Chemistry (Vol. 400, Issue 6, p. 1691-1704). https://doi.org/10.1007/s00216-011-4862-1
().
Versatile procedure for synthesis of janus-type carbon tubes. In Chemistry of Materials (Vol. 23, Issue 10, p. 2595-2599). https://doi.org/10.1021/cm2001573
().
Design of catalytically active cylindrical and macroporous gold microelectrodes. In Advanced Functional Materials (Vol. 21, Issue 4, p. 691-698). https://doi.org/10.1002/adfm.201001761
().
Electrogeneration of ultra-thin silica films for the functionalization of macroporous electrodes. In Electrochemistry Communications (Vol. 13, Issue 2, p. 138-142). https://doi.org/10.1016/j.elecom.2010.11.034
().
Ordered macroporous ruthenium oxide electrodes for potentiometric and amperometric sensing applications. In Electroanalysis (Vol. 23, Issue 5, p. 1186-1192). https://doi.org/10.1002/elan.201000726
().
Single point electrodeposition of nickel for the dissymmetric decoration of carbon tubes. In Electrochimica Acta (Vol. 55, Issue 27, p. 8116-8120). https://doi.org/10.1016/j.electacta.2010.01.070
().
Propulsion of microobjects by dynamic bipolar self-regeneration. In Journal of the American Chemical Society (Vol. 132, Issue 45, p. 15918-15919). https://doi.org/10.1021/ja107644x
().
Nanotube fibers for electromechanical and shape memory actuators. In Journal of Materials Chemistry (Vol. 20, Issue 17, p. 3487-3495). https://doi.org/10.1039/b924430a
().
Porous bismuth film electrodes for signal increase in anodic stripping voltammetry. In Electroanalysis (Vol. 22, Issue 13, p. 1524-1530). https://doi.org/10.1002/elan.200970016
().
Macroporous ruthenium oxide electrodes for electrochemical applications. In ECS Transactions (Vol. 33, Issue 32, p. 19-25). https://doi.org/10.1149/1.3562555
().
Macroporous antimony film electrodes for stripping analysis of trace heavy metals. In Electrochemistry Communications (Vol. 12, Issue 1, p. 114-117). https://doi.org/10.1016/j.elecom.2009.11.001
().
Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes. In Physical Chemistry Chemical Physics (Vol. 12, Issue 34, p. 9993-9995). https://doi.org/10.1039/c0cp00367k
().
Fabrication of a macroporous microwell array for surface-enhanced raman scattering. In Advanced Functional Materials (Vol. 19, Issue 19, p. 3129-3135). https://doi.org/10.1002/adfm.200900752
().
Absolute asymmetric Reduction Based. on the relative orientation of achiral reactants. In Angewandte Chemie - International Edition (Vol. 48, Issue 37, p. 6857-6860). https://doi.org/10.1002/anie.200902841
().
Multicomponent macroporous materials with a controlled architecture. In Journal of Materials Chemistry (Vol. 19, Issue 3, p. 409-414). https://doi.org/10.1039/b811391b
().
Single-crystalline gold nanoplates from a commercial gold plating solution. In Journal of Nanoscience and Nanotechnology (Vol. 9, Issue 3, p. 2045-2050). https://doi.org/10.1166/jnn.2009.394
().
Controlled purification, solubilisation and cutting of carbon nanotubes using phosphomolybdic acid. In Journal of Materials Chemistry (Vol. 18, Issue 34, p. 4056-4061). https://doi.org/10.1039/b805907a
().
Ordered porous thin films in electrochemical analysis. In TrAC - Trends in Analytical Chemistry (Vol. 27, Issue 7, p. 593-603). https://doi.org/10.1016/j.trac.2008.03.011
().
Dissymmetric carbon nanotubes by bipolar electrochemistry. In Nano Letters (Vol. 8, Issue 2, p. 500-504). https://doi.org/10.1021/nl072652s
().
Carbon nanotube fiber microelectrodes: Design, characterization, and optimization. In Journal of Nanoscience and Nanotechnology (Vol. 7, Issue 10, p. 3373-3377). https://doi.org/10.1166/jnn.2007.828
().
Optimized carbon nanotube fiber microelectrodes as potential analytical tools. In Analytical and Bioanalytical Chemistry (Vol. 389, Issue 2, p. 499-505). https://doi.org/10.1007/s00216-007-1467-9
().
Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. In Electrochemistry Communications (Vol. 9, Issue 8, p. 2121-2127). https://doi.org/10.1016/j.elecom.2007.06.008
().
Raspberry-like gold microspheres: Preparation and electrochemical characterization. In Advanced Functional Materials (Vol. 17, Issue 4, p. 618-622). https://doi.org/10.1002/adfm.200600667
().
Macroporous ultramicroelectrodes for improved electroanalytical measurements. In Analytical Chemistry (Vol. 79, Issue 2, p. 533-539). https://doi.org/10.1021/ac0615854
().
The 11th International Conference on Electroanalysis ESEAC 2006. In Electroanalysis (Vol. 19, Issue 2-3, p. 117-119). https://doi.org/10.1002/elan.200790003
().
Scanning tunneling microscopy of electrode surfaces using carbon composite tips. In Electroanalysis (Vol. 19, Issue 2-3, p. 121-128). https://doi.org/10.1002/elan.200603676
().
3D-ensembles of gold nanowires: Preparation, characterization and electroanalytical peculiarities. In Electroanalysis (Vol. 19, Issue 2-3, p. 227-236). https://doi.org/10.1002/elan.200603724
().
Preparation and characterization of polyoxometalate-modified carbon nanosheets. In Carbon (Vol. 44, Issue 10, p. 1942-1948). https://doi.org/10.1016/j.carbon.2006.02.024
().
Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. In Journal of Solid State Electrochemistry (Vol. 10, Issue 3, p. 168-175). https://doi.org/10.1007/s10008-005-0059-x
().
Hierarchical self-assembly of all-organic photovoltaic devices. In Tetrahedron (Vol. 62, Issue 9, p. 2050-2059). https://doi.org/10.1016/j.tet.2005.09.150
().
Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. In Electrochimica Acta (Vol. 51, Issue 11, p. 2373-2379). https://doi.org/10.1016/j.electacta.2005.06.041
().
Tailored mesostructuring and biofunctionalization of gold for increased electroactivity. In Angewandte Chemie - International Edition (Vol. 45, Issue 8, p. 1317-1321). https://doi.org/10.1002/anie.200503292
().
Enhanced photovoltaic response in hydrogen-bonded all-organic devices. In Organic Letters (Vol. 7, Issue 16, p. 3409-3412). https://doi.org/10.1021/ol050966l
().
Bioelectrocatalysis with modified highly ordered macroporous electrodes. In Journal of Electroanalytical Chemistry (Vol. 579, Issue 2, p. 181-187). https://doi.org/10.1016/j.jelechem.2004.11.018
().
Molecular lego for the assembly of biosensing layers. In Talanta (Vol. 66, Issue 1, p. 21-27). https://doi.org/10.1016/j.talanta.2004.11.005
().
Top-down approach for the preparation of colloidal carbon nanoparticles. In Chemistry of Materials (Vol. 16, Issue 16, p. 2984-2986). https://doi.org/10.1021/cm049685i
().
NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. In Journal of Electroanalytical Chemistry (Vol. 564, Issue 1-2, p. 167-178). https://doi.org/10.1016/j.jelechem.2003.10.034
().
Electrochemical Removal of Metal Cations from Wastewater Monitored by Differential Pulse Polarography. In Journal of Chemical Education (Vol. 81, Issue 2, p. 255-258). https://doi.org/10.1021/ed081p255
().
Electrocatalysis with monolayer modified highly organized macroporous electrodes. In Electrochemistry Communications (Vol. 5, Issue 9, p. 747-751). https://doi.org/10.1016/S1388-2481(03)00175-9
().
Ca2+ enhanced catalytic nadh oxidation: A coupled 31p-nmr and electrochemistry study. In Physical Chemistry Chemical Physics (Vol. 5, Issue 10, p. 2082-2088). https://doi.org/10.1039/b212605b
().
Spatial control of polyaniline electrodeposition by patterned polyoxometalate monolayers. In Journal of the Electrochemical Society (Vol. 150, Issue 5). https://doi.org/10.1149/1.1565139
().
The effect of calcium ions on the electrocatalytic oxidation of NADH by poly(aniline)-poly(vinylsulfonate) and poly(aniline)-poly(styrenesulfonate) modified electrodes. In Physical Chemistry Chemical Physics (Vol. 5, Issue 3, p. 588-593). https://doi.org/10.1039/b209702h
().
Comb and dendrigraft polystyrenes with ferrocenyl units at the periphery: Synthesis and electrochemical properties. In Macromolecules (Vol. 35, Issue 24, p. 8994-9000). https://doi.org/10.1021/ma020978b
().
Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline. In Electrochemistry Communications (Vol. 4, Issue 6, p. 510-515). https://doi.org/10.1016/S1388-2481(02)00361-2
().
Mediator-modified electrodes for catalytic NADH oxidation: High rate constants at interesting overpotentials. In Bioelectrochemistry (Vol. 56, Issue 1-2, p. 67-72). https://doi.org/10.1016/S1567-5394(02)00009-9
().
Affinity assembled multilayers for new dehydrogenase biosensors. In Bioelectrochemistry (Vol. 56, Issue 1-2, p. 123-126). https://doi.org/10.1016/S1567-5394(02)00006-3
().
A simple student experiment for teaching surface electrochemistry: Adsorption of polyoxometalate on graphite electrodes. In Journal of Chemical Education (Vol. 79, Issue 3, p. 349-382). https://doi.org/10.1021/ed079p349
().
Research à la mode Française: Facts and fiction. In Nachrichten aus der Chemie (Vol. 50, Issue 5, p. 597-600). https://doi.org/10.1002/nadc.20020500509
().
Localized electrodeposition by patterned redox-active monolayers. In ChemPhysChem (Vol. 2, Issue 11, p. 688-691). https://doi.org/10.1002/1439-7641(20011119)2:11<688::AID-CPHC688>3.0.CO;2-4
().
Electrodes modified with nitrofluorenone derivatives as a basis for new biosensors. In Biosensors and Bioelectronics (Vol. 16, Issue 9-12, p. 653-660). https://doi.org/10.1016/S0956-5663(01)00194-4
().
The effect of modification of carbon electrodes with hybrid inorganic/organic monolayers on morphology and electrocatalytic activity of platinum deposits. In Electrochimica Acta (Vol. 46, Issue 26-27, p. 4197-4204). https://doi.org/10.1016/S0013-4686(01)00686-7
().
Adsorption and catalytic activity of trinitro-fluorenone derivatives towards NADH oxidation on different electrode materials. In Electrochemistry Communications (Vol. 3, Issue 10, p. 585-589). https://doi.org/10.1016/S1388-2481(01)00224-7
().
Effect of Ca2+ on the amperometric determination of dehydrogenase substrates with nitro-fluorenone modified electrodes. In Electroanalysis (Vol. 13, Issue 8-9, p. 770-774). https://doi.org/10.1002/1521-4109(200105)13:8/9<770::AID-ELAN770>3.0.CO;2-J
().
Electrocatalytic reduction of H2 O2 at P2 Mo18 O62 6- modified glassy carbon. In Electrochimica Acta (Vol. 45, Issue 11, p. 1829-1836). https://doi.org/10.1016/S0013-4686(99)00399-0
().
Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. In Journal of Electroanalytical Chemistry (Vol. 477, Issue 1, p. 79-88). https://doi.org/10.1016/S0022-0728(99)00393-9
().
Ca2+ enhanced electrocatalytic oxidation of NADH by immobilized nitro-fluorenones. In Electrochemistry Communications (Vol. 1, Issue 10, p. 497-501). https://doi.org/10.1016/S1388-2481(99)00097-1
().
Polyoxometalate modified electrodes: From a monolayer to multilayer structures. In Journal of Electroanalytical Chemistry (Vol. 462, Issue 2, p. 187-194). https://doi.org/10.1016/S0022-0728(98)00410-0
().
Dynamical characterization of electroless deposition in the diffusion-limited regime. In Fractals (Vol. 5, Issue 1, p. 75-86). https://doi.org/10.1142/S0218348X97000085
().
Adsorption of monolayers of P2 Mo18 O62 6- and deposition of multiple layers of Os(bpy)32+-P2 Mo18 O62 6- on electrode surfaces. In Langmuir (Vol. 12, Issue 22, p. 5481-5488). https://doi.org/10.1021/la960461r
().
Effects of chirality during electrochemical oxidation of 2,3 butanediol stereoisomers. In Journal of Electroanalytical Chemistry (Vol. 410, Issue 2, p. 243-246). https://doi.org/10.1016/0022-0728(96)04676-1
().
Interferometric characterization of growth dynamics during dendritic electrodeposition of zinc. In Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics (Vol. 53, Issue 2, p. 1777-1788). https://doi.org/10.1103/PhysRevE.53.1777
().
Role of convection in thin-layer electrodeposition. In Physical Review E (Vol. 51, Issue 4, p. 3444-3458). https://doi.org/10.1103/PhysRevE.51.3444
().
The influence of transport and reaction processes on the morphology of a metal electrodeposit in thin gap geometry. In Physica A: Statistical Mechanics and its Applications (Vol. 213, Issue 1-2, p. 209-231). https://doi.org/10.1016/0378-4371(94)00162-M
().
Diffusion-limited kinetics in thin-gap electroless deposition. In Journal of Electroanalytical Chemistry (Vol. 397, Issue 1-2, p. 93-104). https://doi.org/10.1016/0022-0728(95)04157-X
().
Revisited experimental analysis of morphological changes in thin-layer electrodeposition. In Journal of Electroanalytical Chemistry (Vol. 371, Issue 1-2, p. 93-100). https://doi.org/10.1016/0022-0728(93)03234-G
().
The modern student laboratory: Determination of ionic mobilities by thin-layer electrodeposition. In Journal of Chemical Education (Vol. 71, Issue 11). https://doi.org/10.1021/ed071pa273
().
Structural Analysis of Electroless Deposits in the Diffusion-Limited Regime. In Physical Review Letters (Vol. 73, Issue 22, p. 2998-3001). https://doi.org/10.1103/PhysRevLett.73.2998
().
Spatiotemporal morphological transitions in thin-layer electrodeposition: The Hecker effect. In Physical Review E (Vol. 49, Issue 5, p. 4298-4305). https://doi.org/10.1103/PhysRevE.49.4298
().
Experimental demonstration of the origin of interfacial rhythmicity in electrodeposition of zinc dendrites. In Journal of Electroanalytical Chemistry (Vol. 359, Issue 1-2, p. 81-96). https://doi.org/10.1016/0022-0728(93)80401-3
().
Multiple relaxation pathways in photoexcited dimethylaminonitro- and dimethylaminocyano-stilbenes. In Chemical Physics Letters (Vol. 208, Issue 1-2, p. 48-58). https://doi.org/10.1016/0009-2614(93)80075-Z
().
Comparative determination of effective transport numbers in solid lithium electrolytes. In Journal of Power Sources (Vol. 41, Issue 3, p. 253-261). https://doi.org/10.1016/0378-7753(93)80043-O
().
Synthesis and characterisation of the charge transfer salt [Fe(η5-C9 Me7 )2 ]·+[TCNE]·-. In Synthetic Metals (Vol. 42, Issue 1-2, p. 1695-1698). https://doi.org/10.1016/0379-6779(91)91933-2
().