Image

Téléphone
05 40 00 63 54
Groupe de recherche
Spectroscopie Moléculaire
Statut
Permanent
Poste
ITA/BIATSS
Batiment
A12
Etage
4° Ouest
Publications
Nanoscale Chemical Imaging of Amyloid Fibrils in Water Using Total-Internal-Reflection Tip-Enhanced Raman Spectroscopy. In Journal of Physical Chemistry Letters (Vol. 15, Issue 40, p. 10190-10197). https://doi.org/10.1021/acs.jpclett.4c02309
().
Carbon black structural effect within kraft black liquor-based poly(HIPE): enhanced hydrogen storage and electro-capacitive properties. In Journal of Materials Chemistry A (Vol. 12, Issue 34, p. 22703-22714). https://doi.org/10.1039/d4ta02097a
().
Raman Microspectroscopy of Particles. In Microanalysis of Atmospheric Particles: Techniques and Applications (p. 127-149). https://doi.org/10.1002/9781119554318.ch6
().
Contactless manufacturing of TERS-active AFM tips by bipolar electrodeposition. In Nanoscale. https://doi.org/10.1039/d4nr03068k
().
Chemical Imaging of RNA-Tau Amyloid Fibrils at the Nanoscale Using Tip-Enhanced Raman Spectroscopy. In Angewandte Chemie - International Edition (Vol. 62, Issue 50, p. e202314369). https://doi.org/10.1002/anie.202314369
().
Nanostructured gold-coated AFM tips generated by potentiostatic electrodeposition for tip-enhanced Raman spectroscopy. In Chemical Physics Letters (Vol. 832, p. 140893). https://doi.org/10.1016/j.cplett.2023.140893
().
Sequential chiral induction between organic and inorganic supramolecular helical assemblies for the in situ formation of chiral carbon dots. In Chemical Communications (Vol. 59, Issue 64, p. 9762-9765). https://doi.org/10.1039/d3cc02057f
().
Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Tau Fibrils. In Journal of Physical Chemistry B (Vol. 126, Issue 27, p. 5024-5032). https://doi.org/10.1021/acs.jpcb.2c02786
().
Influence of SIC control rod material on the iodine release in case of nuclear severe accident – Chemical reactivity with fission products in thermal conditions of RCS. In Annals of Nuclear Energy (Vol. 168, p. 108900). https://doi.org/10.1016/j.anucene.2021.108900
().
Toward a better understanding of ferric-oxalate complex photolysis: The role of the aqueous/air interface of droplet. In Chemosphere (Vol. 289, p. 133127). https://doi.org/10.1016/j.chemosphere.2021.133127
().
Tip-enhanced Raman spectroscopy of Aβ(1-42) fibrils. In Chemical Physics Letters (Vol. 768, p. 138400). https://doi.org/10.1016/j.cplett.2021.138400
().
Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. In RSC Advances (Vol. 11, Issue 5, p. 2854-2865). https://doi.org/10.1039/d0ra09182k
().
Promoting the Insertion of Molecular Hydrogen in Tetrahydrofuran Hydrate With the Help of Acidic Additives. In Frontiers in Chemistry (Vol. 8, p. 550862). https://doi.org/10.3389/fchem.2020.550862
().
Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Cytochrome c. In Journal of Physical Chemistry Letters (Vol. 11, Issue 10, p. 3835-3840). https://doi.org/10.1021/acs.jpclett.0c00579
().
Dual microelectrodes decorated with nanotip arrays: Fabrication, characterization and spectroelectrochemical sensing. In Electrochimica Acta (Vol. 328, p. 135105). https://doi.org/10.1016/j.electacta.2019.135105
().
Silica twisted and helical nanoribbons as chiral inducers for peroxophosphotungstate anions. In Inorganica Chimica Acta (Vol. 498, p. 119127). https://doi.org/10.1016/j.ica.2019.119127
().
Efficient Passivation of Ag Nanowires with 11-Mercaptoundecanoic Acid Probed Using In Situ Total-Internal-Reflection Surface-Enhanced Raman Scattering Spectroscopy. In ChemNanoMat (Vol. 5, Issue 8, p. 1044-1049). https://doi.org/10.1002/cnma.201900068
().
PIP2 Phospholipid-Induced Aggregation of Tau Filaments Probed by Tip-Enhanced Raman Spectroscopy. In Angewandte Chemie - International Edition (Vol. 57, Issue 48, p. 15738-15742). https://doi.org/10.1002/anie.201809636
().
Spectral dependence of plasmon-enhanced fluorescence in a hollow nanotriangle assembled by DNA origami: Towards plasmon assisted energy transfer. In Nanoscale (Vol. 10, Issue 35, p. 16568-16573). https://doi.org/10.1039/c8nr04426k
().
Optically active polyoxometalate-based silica nanohelices: Induced chirality from inorganic nanohelices to achiral POM clusters. In Chemistry - A European Journal (Vol. 24, Issue 44, p. 11344-11353). https://doi.org/10.1002/chem.201801905
().
Selective trapping of CO2 gas and cage occupancy in CO2 -N2 and CO2 -CO mixed gas hydrates. In Chemical Communications (Vol. 54, Issue 34, p. 4290-4293). https://doi.org/10.1039/c8cc00538a
().
Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications. In Applied Surface Science (Vol. 418, p. 446-451). https://doi.org/10.1016/j.apsusc.2017.01.281
().
Guest Partitioning in Carbon Monoxide Hydrate by Raman Spectroscopy. In Journal of Physical Chemistry C (Vol. 121, Issue 25, p. 13798-13802). https://doi.org/10.1021/acs.jpcc.7b04947
().
Electro-mechanical properties of inkjet-printed graphene oxide nanosheets. In Physica Status Solidi (A) Applications and Materials Science (Vol. 214, Issue 3, p. 1600492). https://doi.org/10.1002/pssa.201600492
().
Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ1–42 Fibrils at the Nanometer Scale. In Angewandte Chemie - International Edition (Vol. 56, Issue 7, p. 1771-1774). https://doi.org/10.1002/anie.201610399
().
Direct Observation of Siloxane Chirality on Twisted and Helical Nanometric Amorphous Silica. In Nano Letters (Vol. 16, Issue 10, p. 6411-6415). https://doi.org/10.1021/acs.nanolett.6b02858
().
A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. In Carbon (Vol. 107, p. 388-394). https://doi.org/10.1016/j.carbon.2016.06.017
().
Immobilization of Cryptophane Derivatives onto γ-Fe2 O3 Core-Shell Magnetic Nanoparticles. In Journal of Physical Chemistry C (Vol. 120, Issue 12, p. 6583-6590). https://doi.org/10.1021/acs.jpcc.5b12514
().
One-pot synthesis of gold nanodimers and their use as surface-enhanced Raman scattering tags. In New Journal of Chemistry (Vol. 40, Issue 9, p. 7299-7302). https://doi.org/10.1039/c6nj01389a
().
Colocalized dark-field scattering, atomic force and surface-enhanced Raman scattering microscopic imaging of single gold nanoparticles. In Journal of Optics (United Kingdom) (Vol. 17, Issue 11, p. 114006). https://doi.org/10.1088/2040-8978/17/11/114006
().
Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy. In Chemical Physics Letters (Vol. 615, p. 89-93). https://doi.org/10.1016/j.cplett.2014.10.007
().
Trapped molecular and ionic species in poled borosilicate glasses: Toward a rationalized description of thermal poling in glasses. In Journal of Physical Chemistry C (Vol. 118, Issue 7, p. 3716-3723). https://doi.org/10.1021/jp4101015
().
Tip-enhanced raman spectroscopy of combed double-stranded DNA bundles. In Journal of Physical Chemistry C (Vol. 118, Issue 2, p. 1174-1181). https://doi.org/10.1021/jp410963z
().
Raman spectroscopic investigation of individual single-walled carbon nanotubes helically wrapped by Ionic, semiconducting polymers. In Journal of Physical Chemistry C (Vol. 117, Issue 28, p. 14840-14849). https://doi.org/10.1021/jp4037606
().
Temperature dependence of luminescence for different surface flaws in high purity silica glass. In Optical Materials Express (Vol. 3, Issue 1, p. 1-10). https://doi.org/10.1364/OME.3.000001
().
Magnetism and molecular nonlinear optical second-order response meet in a spin crossover complex. In Journal of Physical Chemistry C (Vol. 116, Issue 20, p. 11251-11255). https://doi.org/10.1021/jp301552u
().
Green luminescence in silica glass: A possible indicator of subsurface fracture. In Applied Physics Letters (Vol. 100, Issue 11, p. 114103). https://doi.org/10.1063/1.3693393
().
Tailoring surface-enhanced Raman scattering effect using microfluidics. In Journal of Physical Chemistry C (Vol. 116, Issue 9, p. 5327-5332). https://doi.org/10.1021/jp209169r
().
Luminescence of different surface flaws in high purity silica glass under UV excitation. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 8190, p. 819021). https://doi.org/10.1117/12.899177
().
Characterization of single transition metal oxide nanorods by combining atomic force microscopy and polarized micro-Raman spectroscopy. In Chemical Physics Letters (Vol. 514, Issue 1-3, p. 128-133). https://doi.org/10.1016/j.cplett.2011.08.039
().
Optical cavity modes in semicurved Fabry-Ṕrot resonators. In Journal of Applied Physics (Vol. 108, Issue 8, p. 086109). https://doi.org/10.1063/1.3493691
().
Evidence of a green luminescence band related to surface flaws in high purity silica glass. In Optics Express (Vol. 18, Issue 21, p. 21557-21566). https://doi.org/10.1364/OE.18.021557
().
Femtosecond laser structuring and optical properties of a silver and zinc phosphate glass. In Journal of Non-Crystalline Solids (Vol. 356, Issue 44-49, p. 2658-2665). https://doi.org/10.1016/j.jnoncrysol.2010.03.033
().
Tailoring of the luminescence properties of a silver and zinc phosphate glass at the nanoscale. In Optics InfoBase Conference Papers. https://doi.org/10.1364/bgpp.2010.jtha25
().
Raman spectroscopy of single semiconductor nanowires: From confocal microscopy to TERS. In AIP Conference Proceedings (Vol. 1267, p. 126-127). https://doi.org/10.1063/1.3482419
().
Development of photosensitive glasses for direct laser writing. In Optics InfoBase Conference Papers. https://doi.org/10.1364/bgpp.2010.bwd6
().
Luminescence study of defects in silica glasses under near-UV excitation.. In Physics Procedia (Vol. 8, p. 39-43). https://doi.org/10.1016/j.phpro.2010.10.009
().
Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle. In Optics Express (Vol. 17, Issue 26, p. 24030-24035). https://doi.org/10.1364/OE.17.024030
().
Fabrication of a macroporous microwell array for surface-enhanced raman scattering. In Advanced Functional Materials (Vol. 19, Issue 19, p. 3129-3135). https://doi.org/10.1002/adfm.200900752
().
Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array. In Journal of Physical Chemistry C (Vol. 113, Issue 3, p. 874-881). https://doi.org/10.1021/jp808839f
().
Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy. In Journal of Raman Spectroscopy (Vol. 40, Issue 10, p. 1441-1445). https://doi.org/10.1002/jrs.2404
().
Structural and dynamical insights from vibrational multipolar analyses of isotropic media: Application to molecular liquid CCl4 and silica glass SiO2 . In Journal of Physical Chemistry C (Vol. 112, Issue 46, p. 17906-17915). https://doi.org/10.1021/jp806395k
().
Raman enhancement of azobenzene monolayers on substrates prepared by Angmuir-Blodgett deposition and electron-beam lithography techniques. In Langmuir (Vol. 24, Issue 19, p. 11313-11321). https://doi.org/10.1021/la801697u
().
Chemical reaction imaging within microfluidic devices using confocal raman spectroscopy: The case of water and deuterium oxide as a model system. In Analytical Chemistry (Vol. 80, Issue 5, p. 1689-1695). https://doi.org/10.1021/ac7020147
().
Optical phonons in millerite (NiS) from single-crystal polarized Raman spectroscopy. In Journal of Raman Spectroscopy (Vol. 39, Issue 10, p. 1419-1422). https://doi.org/10.1002/jrs.2014
().
Underwater excimer laser ablation of polymers. In Applied Physics A: Materials Science and Processing (Vol. 92, Issue 4, p. 743-748). https://doi.org/10.1007/s00339-008-4567-2
().
Raman spectroscopy and ab initio investigations of transient complex formation in CO2 -benzene mixtures. In Journal of Chemical Physics (Vol. 129, Issue 22, p. 224511). https://doi.org/10.1063/1.3037025
().
Ultrasharp optical-fiber nanoprobe array for raman local-enhancement imaging. In Small (Vol. 4, Issue 1, p. 96-99). https://doi.org/10.1002/smll.200700526
().
From polymer films to organic nanoparticles suspensions by means of excimer laser ablation in water. In Applied Physics A: Materials Science and Processing (Vol. 93, Issue 4, p. 827-831). https://doi.org/10.1007/s00339-008-4746-1
().
Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. In Advanced Functional Materials (Vol. 17, Issue 11, p. 1765-1774). https://doi.org/10.1002/adfm.200600937
().
Enhancement of the Raman scattering signal due to a nanolens effect. In Applied Spectroscopy (Vol. 61, Issue 6, p. 621-623). https://doi.org/10.1366/000370207781269837
().
Spectroscopic and ab initio characterization of the conformational states of the bis(perflouroethanesulfonyl)imide anion (BETI-). In Journal of Raman Spectroscopy (Vol. 38, Issue 1, p. 53-60). https://doi.org/10.1002/jrs.1573
().
Orientation-independent spectra for biaxial systems in polarized Raman microspectrometry. In Applied Spectroscopy (Vol. 60, Issue 12, p. 1368-1376). https://doi.org/10.1366/000370206779321490
().
Hyper-Raman macro- and micro-spectroscopy in materials: Towards high quality signals and good spatial resolution. In Chemical Physics Letters (Vol. 431, Issue 1-3, p. 190-194). https://doi.org/10.1016/j.cplett.2006.09.054
().
Conformational isomerism and phase transitions in tetraethylammonium bis(trifluoromethanesulfonyl)imide Et4 NTFSI. In Journal of Molecular Structure (Vol. 783, Issue 1-3, p. 145-156). https://doi.org/10.1016/j.molstruc.2005.08.028
().
Raman confocal imaging of reaction-diffusion processes in microchannels. In Houille Blanche (Issue 4, p. 37-39). https://doi.org/10.1051/lhb:200604004
().
On-line laser Raman spectroscopic probing of droplets engineered in microfluidic devices. In Lab on a Chip (Vol. 6, Issue 9, p. 1140-1146). https://doi.org/10.1039/b602702d
().
Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. In Physical Chemistry Chemical Physics (p. 5629-5632). https://doi.org/10.1039/b615127b
().
Polarized Raman confocal microscopy of single gallium nitride nanowires. In Journal of the American Chemical Society (Vol. 127, Issue 49, p. 17146-17147). https://doi.org/10.1021/ja056006b
().
Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2 -based glasses. In Optics Express (Vol. 13, Issue 12, p. 4759-4769). https://doi.org/10.1364/OPEX.13.004759
().
In situ Raman imaging of interdiffusion in a microchannel. In Applied Physics Letters (Vol. 86, Issue 9, p. 1-3). https://doi.org/10.1063/1.1873050
().
Laser damage to optical components induced by surface chromium particles. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5647, p. 156-164). https://doi.org/10.1117/12.585248
().
Raman study of tetraglyme-LiClO4 solvate structures. In Physical Chemistry Chemical Physics (Vol. 6, Issue 17, p. 4260-4267). https://doi.org/10.1039/b406578f
().
Raman study of crystalline solvates between glymes CH3 (OCH2 CH2 )n OCH3 (n = 1, 2 and 3) and LiClO4 . In Physical Chemistry Chemical Physics (p. 938-944). https://doi.org/10.1039/b315475k
().